

Série d'exercices de Mathématique

Théorème des Valeurs Intermédiaires (TVI.)

Exercice n°1:

Soit la fonction f définie sur par $f(x) = x^3 + x^2 - x$.

- 1) Montrer que la fonction f est continue sur [-1;2].
- 2) Calculer f(-1) et f(2).
- 3) En déduire que l'équation f(x) = 5 admet au moins une solution dans [-1;2].

Exercice n°2.

On considère la fonction définie par : $f(x) = x^3 + x^2 - 5x + 4$

1) Calculer la dérivée de f ainsi que les limites aux bornes de $D\!f$.

En déduire le tableau de variation de f sur \mathbb{R} .

- 2) Montrer que l'équation f(x) = 0 admet une unique solution $\alpha \in \mathbb{R}$.
- 3) Déduire de des résultats précédents le signe de f(x) sur $\mathbb R$

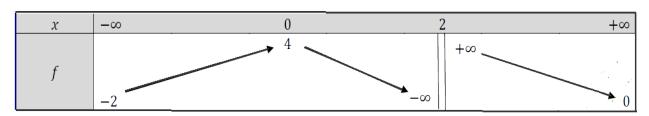
Exercice n° 3.

Soit f est la fonction définie sur l'intervalle [-3 ; 6] par $f(x) = x^3 - 12x$.

- a) Déterminer f'(x) et dresser le tableau de variation de f.
- b) Pourquoi l'équation f(x) = 30 a-t-elle des solutions dans l'intervalle [-3; 6]?
- c) Combien cette équation a-t-elle de solutions ?

Exercice n°4

Ci-après figure le tableau de variations d'une fonction f définie sur \mathbb{R} - { 2}.



- 1) Déterminer le nombre de solutions de l'équation f(x) = 3.
- 2) Déterminer le nombre de solutions de l'équation f(x) = 0.
- 3) Déterminer le nombre de solutions de l'équation f(x) = -2.

Rappel: Théorème des valeurs intermédiaires (TVI) sur un intervalle fermé borné

Soit une fonction continue sur un intervalle fermé borné [a;b] (a et b réels tels que a \prec b). Alors, pour tout réel k compris entre f(a) et f(b), il existe au moins un réel α compris entre a et b tel que $f(\alpha) = k$.

Autrement dit, l'équation f(x) = k admet au moins une solution dans [a;b].