

Exponentielle

Série 3 : Calcul de dérivées

Exercice 1: Déterminer les dérivées des fonctions suivantes :

1)
$$f(x) = e^{\sqrt{2x+1}}$$

1)
$$f(x) = e^{\sqrt{2x+1}}$$
 2) $g(x) = e^{-2x^2} - 3e^{3x+1}$

3)
$$h(x) = e^{\frac{x+1}{-x+3}}$$
 4) $f(x) = (e^x - 4)\sqrt{e^x - 1}$

4)
$$f(x) = (e^x - 4)\sqrt{e^x - 1}$$

Exercice 2:

Démontrer que la fonction f est dérivable sur **IR**, puis calculer f'(x) dans chacun des cas suivants.

$$1) \quad f(x) = x \cdot e^{\sqrt{x}}$$

2)
$$f(x) = e^{-x} . \ln x$$

3)
$$f(x) = \frac{e^x}{1 + e^{2x}}$$

4)
$$f(x) = \ln(e^x + e^{-x})$$

Exercice 3:

Soit la fonction f définie pour tout nombre réel x par:

$$f(x) = (2x^2 - 7x + 5)e^x$$

- 1) Déterminer la dérivée seconde de la fonction f.
- 2) Vérifier que : $(\forall x \in IR)$; $f(x) = 4e^x + 2f'(x) f''(x)$

Exercice 4: Soit La fonction f définie par : $f(x) = 4^x - 2^{x+1}$

- 1) déterminer D_f
- 2) calculer les limites aux bornes de D_f
- 3)Etudier les variations de f et dresser son tableau de variation.
- 4) Etudier les branches infinies de la courbe Cf
- 5) construire la courbe C_f dans un repére $(o; \vec{i} \ \vec{j})$

