Algèbre

Corps finis

Corps finis

Exercice 1. Répéter dix fois « \mathbf{F}_4 n'est pas $\mathbf{Z}/4\mathbf{Z}$ ».

Exercice 2. Construire les tables d'addition et de multiplication de \mathbf{F}_9 et \mathbf{F}_{16} .

Exercice 3. Combien le groupe \mathbf{F}_q^{\times} possède-t-il de générateurs?

Exercice 4. (Théorème de Wedderburn par les polynômes cyclotomiques) Soit A une algèbre à division (c-à-d un corps non commutatif) de cardinal fini.

- 1. Montrer que A est de cardinal q^n , où q est une puissance d'un nombre premier, égale au cardinal du centre k de A.
- 2. Montrer que $A-\{0\}$ agit sur lui-même par automorphismes intérieurs. Montrer que si $x \in A-\{0\}$, alors $\operatorname{Stab}_x \cup \{0\}$ est un sous-k-espace vectoriel de A.
- 3. On suppose désormais que A n'est pas commutatif. Montrer que les orbites de l'action précédemment décrite sont de cardinal $\frac{q^n-1}{q^d-1}$, avec $d\mid n$.
- 4. Montrer que pour $d \mid n, d \neq n$, on a $\Phi_n(q) \mid \frac{q^n-1}{q^d-1}$, où Φ_n est le *n*-ième polynôme cyclotomique.
- 5. En appliquant la formule des classes, déduire des question précédentes que $|\Phi_n(q)| \le q 1$.
- 6. En déduire une contradiction, et donc que A est un corps commutatif.

Exercice 5. (Sur le huitième polynôme cyclotomique)

On rappelle que le polynôme $\Phi_8(X) = X^4 + 1$ est irréductible sur \mathbb{Z} . Le but de cet exercice est de montrer (de deux manières différentes) qu'il est réductible dans tout corps fini.

1. Écrire la décomposition de Φ_8 en facteurs irréductibles dans $\mathbb{F}_2[X]$.

Dans toute la suite, p désigne un nombre premier différent de 2.

- 2. (a) Donner toutes les manières possibles d'écrire Φ_8 comme produit de deux polynômes de degré 2 dans $\mathbb{C}[X]$.
 - (b) Montrer qu'au moins l'un des trois éléments -1, 2 et -2 est un carré dans \mathbb{F}_p .
 - (c) En déduire que Φ_8 est réductible dans $\mathbb{F}_p[X]$.
- 3. (a) Montrer que Φ_8 est réductible si et seulement si il possède une racine dans \mathbb{F}_{p^2} .

- (b) Montrer que Φ_8 possède une racine dans \mathbb{F}_{p^2} si et seulement si 8 divise p^2-1 .
- (c) En déduire que Φ_8 est réductible dans $\mathbb{F}_p[X]$.

Exercice 6. (Un critère d'irréductibilité)

Soit k un corps fini de cardinal q, et \overline{k} une clôture algébrique de k.

Soit P un polynôme à coefficients dans k, de degré $d \ge 1$. Montrer que P est irréductible dans k[X] si et seulement si il vérifie les deux conditions suivantes :

- (i) P divise $X^{q^d} X$,
- (ii) pour tout nombre premier p divisant d, P et $X^{q^{d/p}} X$ sont premiers entre

Exercice 7. (Théorème de Chevalley-Warning)

Soient $f_k \in \mathbf{F}_q[X_1, \dots, X_n]$ des polynômes à n variables à coefficients dans \mathbf{F}_q (avec $q = p^m$) tels que $\sum_k \deg(f_k) < n$ et V l'ensemble de leurs zéros communs dans \mathbf{F}_q^n . Le but de l'exercice est de montrer la congruence $\operatorname{card}(V) \equiv 0 \pmod{p}$.

- 1. Calculer pour tout $h \in \mathbb{N}$ la somme $S_q(h) = \sum_{x \in \mathbb{F}_q} x^h$, où l'on a posé $x^0 = 1$, même si x = 0.
- 2. Montrer que card $(V) \equiv \sum_{x \in \mathbf{F}_q^n} \prod_k (1 f_k(x_1, \dots, x_n)^{q-1}) \pmod{p}$.
- 3. Montrer enfin que lorsque $j_1, \ldots, j_n \in \mathbf{N}$ sont des entiers qui vérifient $j_1 + \cdots + j_n < n(q-1)$, on a $\sum_{(x_1, \ldots, x_n) \in \mathbf{F}_q^n} x_1^{j_1} \cdots x_n^{j_n} = 0$ puis conclure.
- 4. Soit P homogène de degré d < n. Montrer que P admet un zéro dans \mathbf{F}_q^n différent de $(0,\ldots,0)$.
- 5. Si $\sum_k \deg f_k < n$ et si les f_k sont sans terme constant, montrer que les f_k on un zéro non trivial commun.

Exercice 8. (Interpolation de Lagrange)

Montrer qu'une fonction $f: \mathbf{F}_q \to \mathbf{F}_q$ est de manière unique la fonction associée à un polynôme de degré au plus q-1.

De même, montrer que tout fonction $g: \mathbf{F}_q^n \to \mathbf{F}_q$ est de manière unique la fonction associée à un polynôme P de $\mathbf{F}_q[X_1, \dots, X_n]$ tel que $\deg_{X_i} P \leq q - 1$.

Exercice 9. (Un lien avec la théorie des groupes)

Déterminer les groupes dont le groupe d'automorphismes est trivial.