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Chapter 4

Fiber Bundles

Fiber bundles form a nice class of maps in topology, and many naturally
occurring maps are fiber bundles. A theorem of Hurewicz says that fiber
bundles are fibrations, and fibrations are a natural class of maps to study in
algebraic topology, as we will soon see. There are several alternate notions of
fiber bundles and their relationships with one another is somewhat technical.
The standard reference is Steenrod’s book [37].

A fiber bundle is also called a Hurewicz fiber bundle or a locally trivial
fiber bundle. The word “fiber” is often spelled “fibre,” even by people who
live in English speaking countries in the Western hemisphere.

4.1. Group actions

Let G be a topological group. This means that G is a topological space and
also a group so that the multiplication map µ : G × G → G, µ(g, h) = gh
and the inversion map ι : G→ G, ι(g) = g−1 are continuous.

Definition 4.1. A topological group G acts on a space X if there is a group
homomorphism G→ Homeo(X) such that the “adjoint”

G×X → X (g, x) �→ g(x)

is continuous. We will usually write g · x instead of g(x).
The orbit of a point x ∈ X is the set Gx = {g · x|g ∈ G}.
The orbit space or quotient space X/G is the quotient space X/ ˜ , with

the equivalence relation x˜ g · x.

The fixed set is XG = {x ∈ X|g · x = x for all g ∈ G}.
An action is called free if g(x) �= x for all x ∈ X and for all g �= e.
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78 4. Fiber Bundles

An action is called effective if the homomorphism G → Homeo(X) is
injective.

A variant of this definition requires the homomorphism G→ Homeo(X)
to be continuous with respect to the compact-open topology on Homeo(X),
or some other topology, depending on what X is (for example, one could
take the C∞ topology on Diff(X) if X is a smooth manifold). Also note that
we have defined a left action of G on X. There is a corresponding notion of
right G-action (x, g) �→ x · g. For example, one usually takes π1X to act on
the right by covering transformations on the universal cover of X.

4.2. Fiber bundles

We can now give a definition of fiber bundles.

Definition 4.2. Let G be a topological group acting effectively on a space
F . A fiber bundle E over B with fiber F and structure group G is a map
p : E → B together with a collection of homeomorphisms {ϕ : U × F →
p−1(U)} for open sets U in B (ϕ is called a chart over U) such that:

1. The diagram

U × F p−1(U)

U

✲ϕ

❅
❅

❅❘
pU

�
��✠

p

commutes for each chart ϕ over U .
2. Each point of B has a neighborhood over which there is a chart.
3. If ϕ is a chart over U and V ⊂ U is open, then the restriction of ϕ to

V is a chart over V .
4. For any charts ϕ, ϕ′ over U , there is a continuous map θϕ,ϕ′ : U → G

so that
ϕ′(u, f) = ϕ(u, θϕ,ϕ′(u) · f)

for all u ∈ U and all f ∈ F . The map θϕ,ϕ′ is called the transition
function for ϕ, ϕ′.

5. The collection of charts is maximal among collections satisfying the
previous conditions.

The standard terminology is to to call B the base, F is called the
fiber, and E is called the total space. For shorthand one often abbreviates
(p, E, B, F ) by E.

This definition of fiber bundle is slick and some discussion about the
various requirements helps to understand the concept.
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A map p : E → B is called a locally trivial bundle if the first 3 require-
ments of Definition 4.2 are met. There is no need to assume that any group
G is acting since this does not enter into the first three axioms. Local triv-
iality is the important distinction between a fiber bundle and an arbitrary
map.

The fourth condition invokes the structure group G. To understand the
difference between a locally trivial bundle and a fiber bundle, notice that in
a locally trivial bundle, if

U × F p−1(U)

U

❅
❅❅❘pU

✲ϕ

�
��✠ p

and

U × F p−1(U)

U

❅
❅❅❘pU

✲ϕ′

�
��✠ p

are two local trivializations, then commutativity of the diagram

U × F p−1(U) U × F

U

◗
◗

◗◗�pU

✲ϕ
′

❄
p

✲ϕ−1

✑
✑

✑✑✰ pU

implies that there is a map ψϕ,ϕ′ : U × F → F so that the composite
ϕ−1 ◦ ϕ′ : U × F → U × F has the formula

(u, f) �→ (u, ψϕ,ϕ′(u, f)).

For each u ∈ U the map ψϕ,ϕ′(u,−) : F → F is a homeomorphism.
In a fiber bundle, the map ψϕ,ϕ′ must have a very special form, namely

1. The homeomorphism ψϕ,ϕ′(u,−) : F → F is not arbitrary, but is
given by the action of an element of G, i.e. ψϕ,ϕ′(u, f) = g · f for
some g ∈ G independent of f . The element g is denoted by θϕ,ϕ′(u).

2. The topology of G is integrated into the structure by requiring that
θϕ,ϕ′ : U → G be continuous.

The requirement that G act effectively on F implies that the functions
θϕ,ϕ′ : U → G are unique. Although we have included the requirement that
G acts effectively of F in the definition of a fiber bundle, there are certain
circumstances when we will want to relax this condition, particularly when
studying liftings of the structure group, for example, when studying local
coefficients.



80 4. Fiber Bundles

It is not hard to see that a locally trivial bundle is the same thing as a
fiber bundle with structure group Homeo(F ). One subtlety about the topol-
ogy is that the requirement that G be a topological group acting effectively
on F says only that the homomorphism G→ Homeo(F ) is injective, but the
inclusion G→ Homeo(F ) need not be an embedding, nor even continuous.

Exercise 56. Show that the transition functions determine the bundle.
That is, suppose that spaces B and F are given, and an action of a topo-
logical group G on F is specified.

Suppose also that a collection of pairs T = {(Uα, θα)} with each Uα an
open subset of B and θα : Uα → G a continuous map is given satisfying:

1. The Uα cover B.

2. If (Uα, θα) ∈ T and W ⊂ Uα, then the restriction (W, θα|W ) is in the
collection T .

3. If (U, θ1) and (U, θ2) are in T , then (U, θ1 · θ2) is in T , where θ1 · θ2

means the pointwise multiplication of functions to G.

4. the collection T is maximal with respect to the first three conditions.

Then there exists a fiber bundle p : E → B with structure group G, fiber
F , and transition functions θα.

The third condition in Exercise 56 is a hidden form of the famous “co-
cycle condition”. Briefly what this means is the following. In an alternative
definition of a fiber bundle one starts with a fixed open cover {Ui} and a
single function φi : Ui × F → p−1(Ui) of each open set Ui of the cover.
Then to each pair of open sets Ui, Uj in the cover one requires there exists
a function θi,j : Ui ∩ Uj → G so that (on Ui ∩ Uj)

φ−1
i ◦ φj(u, f) = (u, θi,j(u) · f).

A G-valued Čech 1-cochain for the cover {Ui} is just a collection of maps
θi,j : Ui ∩ Uj → G and so a fiber bundle with structure group G determines
a Čech 1-cochain.

From this point of view the third condition of the exercise translates
into the requirement that for each triple Ui, Uj and Uk the restrictions of
the various θ satisfy

θi,j · θj,k = θi,k : Ui ∩ Uj ∩ Uk → G.

In the Čech complex this condition is just the requirement that the Čech
1-cochain defined by the θi,j is in fact a cocycle.

This is a useful method of understanding bundles since it relates them
to (Čech) cohomology. Cohomologous cochains define isomorphic bundles,
and so equivalence classes of bundles over B with structure group G can be



4.3. Examples of fiber bundles 81

identified with H1(B;G) (this is one starting point for the theory of charac-
teristic classes; we will take a different point of view in a later chapter). One
must be extremely cautious when working this out carefully. For example,
G need not be abelian (and so what does H1(B;G) mean?) Also, one must
consider continuous cocycles since the θi,j should be continuous functions.
We will not pursue this line of exposition any further in this book.

We will frequently use the notation F ↪→ E
p−→B or

F E

B

✲

❄
p

to indicate a fiber bundle p : E → B with fiber F .

4.3. Examples of fiber bundles

The following are some examples of locally trivial bundles. We will revisit
these and many more examples in greater detail in Section 6.14.

1. The trivial bundle is the projection pB : B × F → B.

2. If F has the discrete topology, any locally trivial bundle over B with
fiber F is a covering space; conversely if p : E → B is a covering space
with B connected, then p is a locally trivial bundle with discrete fiber.

3. The Möbius strip mapping onto its core circle is a locally trivial bun-
dle with fiber [0, 1].

4. The tangent bundle of a smooth manifold is a locally trivial bundle.

Exercise 57. Show that a fiber bundle with with trivial structure group is
(isomorphic to) a trivial bundle.

4.3.1. Vector bundles.

Exercise 58. Let F = Rn, and let G = GLnR ⊂ Homeo(Rn). A fiber
bundle over B with fiber Rn and structure group GLn(R) is a vector bundle
of dimension n over B. Explicitly, show that each fiber p−1{b} can be given
a well-defined vector space structure.

(Similarly, one can take F = Cn, G = GLn(C) to get complex vector
bundles.)

In particular, if M is a differentiable n-manifold, and TM is the set of
all tangent vectors to M then p : TM →M is a vector bundle of dimension
n.
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4.3.2. Bundles over S2. For every integer n ≥ 0, we can construct an S1

bundle over S2 with structure group SO(2); n is called the Euler number
of the bundle. For n = 0, we have the product bundle p : S2 × S1 → S2.
For n ≥ 1, define a 3-dimensional lens space L3

n = S3/Zn, where the action
is given by letting the generator of Zn on act on S3 ⊂ C2 by (z1, z2) �→
(ζnz1, ζnz2) (here ζn = exp2πi/n is a primitive n-th root of unity). For n = 2,
the lens space is just real projective space RP 3. Define the S1-bundle with
Euler number n ≥ 1 by p : L3

n → S2 = C ∪∞ by [z1, z2]→ z1/z2.
When n = 1 we obtain the famous Hopf bundle S1 ↪→ S3 → S2. For

n > 1 the Hopf map S3 → S2 factors through the quotient map S3 → L3
n,

and the fibers of the bundle with Euler number n are S1/Zn which is again
homeomorphic to S1.

Exercise 59. Let S(TS2) be the sphere bundle of the tangent bundle of
the 2-sphere, i.e. the tangent vectors of unit length, specifically

S(TS2) = {(P, v) ∈ R3 ×R3|P, v ∈ S2 and P · v = 0}.

Let SO(3) be the 3-by-3 orthogonal matrices of determinant one (the group
of orientation preserving rigid motions of R3 preserving the origin). This is
a topological group. Show that the spaces S(TS2), SO(3), and RP 3 are all
homeomorphic.

(Hint.

1. Given two perpendicular vectors in R3, a third one can be obtained
by the cross product.

2. On one hand, every element of SO(3) is rotation about an axis, on
the other hand RP 3 is D3/˜ , where you identify antipodal points on
the boundary sphere.)

This gives three incarnations of the S1-bundle over S2 with Euler number
equal to 2:

1. p : S(TS2)→ S2, (P, v) �→ P

2. p : SO(3)→ S2, A �→ A ·

1
0
0


3. p : RP 3 → S2, the lens space bundle above.

4.3.3. Clutching. Suppose a topological group G acts on a space F . Let
X be a space and let ΣX be the unreduced suspension of X,

ΣX =
X × I

(x, 0) ∼ (x′, 0), (x, 1) ∼ (x′, 1)
.
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Then given a map β : X → G, define

E =
(X × [0, 1/2]× F ) � (X × [1/2, 1]× F )

∼
where the equivalence relation is given by identifying (x, 0, f) ∼ (x′, 0, f),
(x, 1, f) ∼ (x′, 1, f), and (x, 1/2, f) ∼ (x, 1/2, β(x)f), where the last relation
glues the summands of the disjoint union. This bundle is called the bundle
over ΣX with clutching function β : X → G ⊂Aut(F ).

Exercise 60. Show that projection onto the first two coordinates gives a
fiber bundle p : E → ΣX with fiber F and structure group G. Give some
examples with X = S0 and X = S1. In particular, show that the S1-bundle
over S2 = ΣS1 with Euler number equal to n is obtained by clutching using
a degree n map S1 → S1.

Clutching provides a good way to describe fiber bundles over spheres.
For X a CW-complex, all bundles over ΣX arise by this clutching construc-
tion. This follows from the fact that any fiber bundle over a contractible
CW-complex is trivial (this can be proven using obstruction theory). Since
ΣX is the union of two contractible spaces, X × [0, 1

2 ]/ ∼ and X × [12 , 1]/ ∼,
any bundle over ΣX is obtained by clutching two trivial bundles over X.

4.3.4. Local coefficients and other structures. An important type of
fiber bundle is the following. Let A be a group and G a subgroup of the
automorphism group Aut(A). Then any fiber bundle E over B with fiber
A and structure group G has the property that each fiber p−1{b} has a
group structure. This group is isomorphic to A, but the isomorphism is not
canonical in general.

We have already run across an important case of this, namely vector
bundles, where A = Rn and G = GLn(R).

In particular, if A is a abelian group with the discrete topology, then
p : E → B is a covering space and is called a system of local coefficients on
B. The terminology will be explained later.

Exercise 61. Define local coefficient systems for R-modules, R a commu-
tative ring, generalizing the case of Z-modules above.

The basic principle at play here is if the structure group preserves a
certain structure on F , then every fiber p−1{b} has this structure. For ex-
ample, a local coefficient system corresponds to the case when the structure
group is a subgroup of the group of automorphisms of the fiber, a discrete
abelian group. A vector bundle corresponds to the case when the structure
group corresponds to the group of linear transformations of a vector space.
Other examples of fibers with a structure that one could consider include
the following.
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1. F is a real vector space with an inner product, G = O(F, 〈 , 〉) ⊂
GL(F ) consists of those linear isomorphisms which preserve the inner
product. The resulting fiber bundle is called a vector bundle with an
orthogonal structure.

2. Similarly one can define a complex vector bundle with hermitian struc-
ture by taking F to be a complex vector space with a hermitian inner
product.

3. Taking this further, let F be a riemannian manifold and suppose that
G acts isometrically on F . Then each fiber in a fiber bundle with
structure group G and fiber F will be (non-canonically) isometric to
F .

4. Take F to be a smooth manifold and G a subgroup of the diffeomor-
phism group of F (with the C∞ strong topology, say). Then each
fiber in a fiber bundle with structure group G will be diffeomorphic
to F .

Exercise 62. Invent your own examples of fibers with structure and the
corresponding fiber bundles.

4.4. Principal bundles and associated bundles

Principal bundles are special cases of fiber bundles, but nevertheless can be
used to construct any fiber bundle. Conversely any fiber bundle determines
a principal bundle. A principal bundle is technically simpler, since the fiber
is just F = G with a canonical action.

Let G be a topological group. It acts on itself by left translation.

G→ Homeo(G), g �→ (x �→ gx).

Definition 4.3. A principal G-bundle over B is a fiber bundle p : P → B
with fiber F = G and structure group G acting by left translations.

Proposition 4.4. If p : P → B is a principal G-bundle, then G acts freely
on P on the right with orbit space B.

Proof. Notice first that G acts on the local trivializations on the right:

(U ×G)×G→ U ×G

(u, g) · g′ = (u, gg′).

This commutes with the action of G on itself by left translation (i.e. (g′′g)g′ =
g′′(gg′)), so one gets a well-defined right action of G on E using the identi-
fication provided by a chart

U ×G
ϕ−→ p−1(U).
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More explicitly, define ϕ(u, g) · g′ = ϕ(u, gg′). If ϕ′ is another chart over U ,
then

ϕ(u, g) = ϕ′(u, θϕ,ϕ′(u)g),

and ϕ(u, gg′) = ϕ′(u, θϕ,ϕ′(u)(gg′)) = ϕ′(u, (θϕ,ϕ′(u)g)g′), so the action in
independent of the choice of chart. The action is free, since the local action
(U × G) × G → U × G is free, and since U × G/G = U it follows that
E/G = B.

As a familiar example, any regular covering space p : E → B is a princi-
pal G-bundle with G = π1B/p∗π1E. Here G is given the discrete topology.
In particular, the universal covering B̃ → B of a space is a principal π1B-
bundle. A non-regular covering space is not a principal G-bundle.

Exercise 63. Any free (right) action of a finite group G on a (Hausdorff)
space E gives a regular cover and hence a principal G-bundle E → E/G.

The converse to Proposition 4.4 holds in some important cases. We
state the following fundamental theorem without proof, referring you to [5,
Theorem II.5.8].

Theorem 4.5. Suppose that X is a compact Hausdorff space, and G is a
compact Lie group acting freely on X. Then the orbit map

X → X/G

is a principal G-bundle.

4.4.1. Construction of fiber bundles from principal bundles. Exer-
cise 56 shows that the transition functions θα : Uα → G and the action of G
on F determine a fiber bundle over B with fiber F and structure group G.

As an application note that if a topological group G acts on spaces F
and F ′, and if p : E → B is a fiber bundle with fiber F and structure group
G, then one can use the transition functions from p to define a fiber bundle
p′ : E′ → B with fiber F ′ and structure group G with exactly the same
transition functions.

This is called changing the fiber from F to F ′. This can be useful because
the topology of E and E′ may change. For example, take G = GL2(R),
F = R2, F ′ = R2 − {0} and the tangent bundle of the 2-sphere.

R2 TS2

S2

✲

❄
p
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After changing the fiber from R2 to R2 − {0} we obtain

R2 − {0} TS2 − z(S2)

S2

✲

❄
p

where z : S2 → TS2 denotes the zero section.
With the second incarnation of the bundle the twisting becomes revealed

in the homotopy type, because the total space of the first bundle has the
homotopy type of S2, while the total space of the second has the homotopy
type of the sphere bundle S(TS2) and hence of RP 3 according to Exercise
59.

A fundamental case of changing fibers occurs when one lets the fiber F ′

be the group G itself, with the left translation action. Then the transition
functions for the fiber bundle

F E

B

✲

❄
p

determine, via the construction of Exercise 56, a principal G-bundle

G P (E)

B.

✲

❄
p

We call this principal G-bundle the principal G-bundle underlying the fiber
bundle p : E → B with structure group G.

Conversely, to a principal G-bundle and an action of G on a space F
one can associate a fiber bundle, again using Exercise 56. An alternative
construction is given in the following definition.

Definition 4.6. Let p : P → B be a principal G-bundle. Suppose G acts
on the left on a space F , i.e. an action G × F → F is given. Define the
Borel construction

P ×G F

to be the quotient space P × F/ ∼ where

(x, f) ∼ (xg, g−1f).

(We are continuing to assume that G acts on F on the left and by Proposition
4.4 it acts freely on the principal bundle P on the right).
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Let [x, f ] ∈ P ×G F denote the equivalence classes of (x, f). Define a
map

q : P ×G F → B

by the formula [x, f ] �→ p(x).

The following important exercise shows that the two ways of going from
a principal G-bundle to a fiber bundle with fiber F and structure group G
are the same.

Exercise 64. If p : P → B is a principal G-bundle and G acts on F , then

F P ×G F

B

✲

❄
q

where q[x, f ] = p(x), is a fiber bundle over B with fiber F and structure
group G which has the same transition functions as p : P → B.

We say q : E ×G F → B is the fiber bundle associated to the principal
bundle p : E → B via the action of G on F .

Thus principal bundles are more basic that fiber bundles, in the sense
that the fiber and its G-action are explicit, namely G acting on itself by left
translation. Moreover, any fiber bundle with structure group G is associated
to a principal G-bundle by specifying an action of G on a space F . Many
properties of bundles become more visible when stated in the context of
principal bundles.

The following exercise gives a different method of constructing the prin-
cipal bundle underlying a vector bundle, without using transition functions.

Exercise 65. Let p : E → B be a vector bundle with fiber Rn and structure
group GL(n,R). Define a space F (E) to be the space of frames in E, so
that a point in F (E) is a pair (b, f) where b ∈ B and f = (f1, · · · , fn) is a
basis for the vector space p−1(b). There is an obvious map q : F (E)→ B.

Prove that q : F (E)→ B is a principal GL(n,R)-bundle, and that

E = F (E)×GL(n,R) Rn

where GL(n,R) acts on Rn in the usual way.

For example, given a representation of GL(n,R), that is, a homomor-
phism ρ : GL(n,R)→ GL(k,R), one can form a new vector bundle

F (E)×ρ Rk

over B.
An important set of examples comes from this construction by starting

with the tangent bundle of a smooth manifold M . The principal bundle
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F (TM) is called the frame bundle of M . Any representation of GL(n,R)
on a vector space V gives a vector bundle with fiber isomorphic to V . Im-
portant representations include the alternating representations GL(n,R)→∧p(Hom(Rn,R)) from which one obtains the vector bundles of differential
p-forms over M .

We next give one application of the Borel construction. Recall that a
local coefficient system is a fiber bundle over B with fiber A and structure
group G where A is a (discrete) abelian group and G acts via a homomor-
phism G→ Aut(A).

Lemma 4.7. Every local coefficient system over a path-connected (and semi-
locally simply connected) space B is of the form

A B̃ ×π1B A

B

✲

❄
q

i.e., is associated to the principal π1B-bundle given by the universal cover
B̃ of B where the action is given by a homomorphism π1B → Aut(A).

In other words the group G ⊂ Aut(A) can be replaced by the discrete
group π1B. Notice that in general one cannot assume that the homomor-
phism π1B → Aut(A) is injective, and so this is a point where we would
wish to relax the requirement that the structure group acts effectively on the
fiber. Alternatively, one can take the structure group to be π1(B)/ ker(φ)
where φ : π1(B)→Aut(A) is the corresponding representation.

Sketch of proof. It is easy to check that q : B̃ ×π1B A → B is a local
coefficient system, i.e. a fiber bundle with fiber on abelian group A and
structure group mapping to Aut(A).

Suppose that p : E → B is any local coefficient system. Any loop
γ : (I, ∂I) → (B, ∗) has a unique lift to E starting at a given point in
p−1(∗), since A is discrete so that E → B is a covering space. Fix an
identification of p−1(∗) with A, given by a chart. Then the various lifts of γ
starting at points of A define, by taking the end point, a function A→ A.

The fact that p : E → B has structure group Aut(A) easily implies
that this function is an automorphism. Since E is a covering space of B,
the function only depends on the homotopy class, and so we get a map
π1(B, ∗)→ Aut(A). This is clearly a homomorphism since if γ̃1, γ̃2 are lifts
starting at a, b, then γ̃1 + γ̃2 (addition in A) is the lift of γ1γ2 (multiplication
in π1) and starts at a+ b. A standard covering space argument implies that
E = B̃ ×π1B A.
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4.5. Reducing the structure group

In some circumstances, given a subgroup H of G and a fiber bundle p : E →
B with structure group G, one can view the bundle as a fiber bundle with
structure group H. When this is possible, we say the structure group can be
reduced to H.

Proposition 4.8. Let H be a topological subgroup of the topological group
G. Let H act on G by left translation. Let q : Q → B be a principal
H-bundle. Then

G Q×H G

B

✲

❄
q

is a principal G-bundle.

The proof is easy; one approach is to consider the transition functions
θ : U → H as functions to G using the inclusion H ⊂ G. To satisfy
maximality of the charts it may be necessary to add extra charts whose
transition functions into G map outside of H.

Exercise 66. Prove Proposition 4.8.

Definition 4.9. Given a principal G-bundle p : E → B we say the structure
group G can be reduced to H for some subgroup H ⊂ G if there exists a
principal H-bundle Q→ B and a commutative diagram

Q×H G E

B

◗
◗◗�

✲r

✑
✑✑✰

so that the map r is G-equivariant. For a fiber bundle, we say the struc-
ture group reduces if the structure group of the underlying principal bundle
reduces.

If we are willing to relax the requirement that the structure group acts
effectively, then we can just assume that we are given a homomorphism
H → G rather than an inclusion of a subgroup. Proposition 4.8 holds
without change. In this more general context, for example, Lemma 4.7
states that any fiber bundle over B with discrete fiber can have its structure
group reduced to π1B.

Exercise 67. Show that every real vector bundle (i.e. fiber bundle with
structure group GL(n,R) acting on Rn in the usual way) over a paracom-
pact base can have its structure group reduced to the orthogonal group
O(n). (Hint: use a partition of unity.)
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Another subtle point is that there may be several “inequivalent” reduc-
tions. An example concerns orientability and orientation of vector bundles.

Definition 4.10. A real vector bundle is called orientable if its structure
group can be reduced to the subgroup GL+(n,R) of matrices with positive
determinant.

For example, a smooth manifold is orientable if and only if its tangent
bundle is orientable. A more detailed discussion of orientability for manifolds
and vector bundles can be found in Section 10.7.

For the following exercise it may help to read the definition of a map
between fiber bundles in the next section.

Exercise 68. Prove that an orientable vector bundle can be oriented in
two incompatible ways, that is, the structure group can be reduced from
GL(n,R) to GL+(n,R) (or, using Exercise 67, from O(n) to SO(n)) in two
ways so that the identity map Id: E → E is a not a map of fiber bundles
with structure group GL+(n,R) (or SO(n)).

4.6. Maps of bundles and pullbacks

The concept of morphisms of fiber bundles is subtle, especially when there
are different fibers and structure groups. Rather than to try to work in
the greatest generality, we will just define one of many possible notions of
morphism.

Definition 4.11. A morphism of fiber bundles with structure group G and
fiber F from E → B to E′ → B′ is a pair of continuous maps f̃ : E → E′

and f : B → B′ so that the diagram

E E′

B B′

✲f̃

❄ ❄
✲

f

commutes and so that for each chart φ : U × F → p−1(U) with b ∈ U and
chart φ′ : U ′ × F → p−1(U ′) and each b ∈ U with f(b) ∈ U ′ the composite

{b} × F p−1(b) (p′)−1(f(b)) {f(b)} × F✲φ ✲f̃ ✲(φ′)−1

is a homeomorphism given by the action of an element ψφ,φ′(b) ∈ G. More-
over, b �→ ψφ,φ′(b) should define a continuous map from U ∩ f−1(U ′) to
G.

As you can see, this is a technical definition. Notice that the fibers
are mapped homeomorphically by a map of fiber bundles of this type. In
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particular, an isomorphism of fiber bundles is a map of fiber bundles (f̃ , f)
which admits a map (g̃, g) in the reverse direction so that both composites
are the identity.

One important type of fiber bundle map is a gauge transformation. This
is a bundle map from a bundle to itself which covers the identity map of the
base, i.e. the following diagram commutes.

E E

B

✲g

❅❅❘p
��✠p

By definition g restricts to an isomorphism given by the action of an element
of the structure group on each fiber. The set of all gauge transformations
forms a group.

One way in which morphisms of fiber bundles arise is from a pullback
construction.

Definition 4.12. Suppose that a fiber bundle p : E → B with fiber F and
structure group G is given, and that f : B′ → B is some continuous function.
Define the pullback of p : E → B by f to be the space

f∗(E) = {(b′, e) ∈ B′ × E | p(e) = f(b′)}.

Let q : f∗(E)→ B be the restriction of the projection E×B → B to f∗(E).
Notice that there is a commutative diagram

f∗(E) E

B′ B
❄

q

✲

❄

p

✲
f

Theorem 4.13. The map q : f∗(E)→ B′ is a fiber bundle with fiber F and
structure group G. The map f∗(E)→ E is a map of fiber bundles.

Proof. This is not hard. The important observation is that if ϕ is a chart
over U ⊂ B, then f−1(U) is open in B′ and ϕ induces a homeomorphism
f−1(U)× F → f∗(E)|f−1(U). We leave the details as an exercise.

The following exercise shows that any map of fiber bundles is given by
a pullback.



92 4. Fiber Bundles

Exercise 69. Let

E′ E

B′ B
❄

p′

✲f̃

❄
p

✲
f

be a map of bundles with fiber F in the sense of Definition 4.11. Show that
there is a factorization

E′ f∗E E

B′ B

❅
❅

❅❅❘
p′

� � � � � � �✲β

❄

q

✲f∗

❄

p

✲
f

so that f∗ ◦ β = f̃ , with (β, Id) a map of bundles over B′.

We have given a rather narrow and rigid definition of fiber bundle mor-
phisms. More general definitions can be given depending on the structure
group, fiber, etc..

Exercise 70. Define a morphism between two fiber bundles with structure
group G but with different fibers by requiring the map on fibers to be equi-
variant. Use this to define a morphism of vector bundles.

4.7. Projects for Chapter 4

4.7.1. Fiber bundles over paracompact bases are fibrations. State
and prove the theorem of Hurewicz (Theorem 6.8) which says that a map
f : E → B with B paracompact is a fibration (see Definition 6.7) provided
that B has an open cover {Ui} so that f : f−1(Ui) → Ui is a fibration for
each i. In particular, any locally trivial bundle over a paracompact space is
a fibration.

A reference for the proof is [10, Chapter XX,§3-4] or [36].

4.7.2. Classifying spaces. For any topological group G there is a space
BG and a principal G-bundle EG → BG so that given any paracom-
pact space B, the pullback construction induces a bijection between the
set [B, BG] of homotopy classes of maps from B to BG and isomorphism
classes of principal G-bundles over B. Explain the construction of the bundle
EG → BG and prove this theorem. Show that the assignment G �→ BG is
functorial with respect to continuous homomorphisms of topological groups.
Show that a principal G-bundle P is of the form Q×H G (as in Proposition
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4.8) if and only if the classifying map f : B → BG lifts to BH

BH

B BG
❄�

�

�

�

�

�

�

�

�

✒

✲
f

Show that given any action of G on F , any fiber bundle E → B with
structure group G and fiber F is isomorphic to the pullback

f∗(EG×G F )

where f : B → BG classifies the principal G-bundle underlying E → B.
Use this theorem to define characteristic classes for principal bundles.

See Theorem 8.22 and Corollary 6.50 for more on this important topic.
A reference for this material is [17]. We will use these basic facts about

classifying spaces throughout this book, notably when we study bordism.


