
SECTION 7: CW COMPLEXES AND BASIC CONSTRUCTIONS

In this section we will introduce CW complexes which give us an important class of spaces which
can be built inductively by gluing ‘cells’. Here we will study basic notions and examples, some facts
concerning the point set topology of these spaces, and also give elementary constructions. In later
sections we will study homotopical properties of CW complexes. Moreover, we will see that this
theory allows us to perform interesting constructions.

By the very definition, a CW complex is given by a space which admits a filtration such that
each next filtration step is obtained from the previous one by attaching cells. Let us begin by
introducing this process. Let en = {(x0, . . . , xn−1) ∈ Rn |

∑
x2i ≤ 1} be a copy of the (closed) n-

ball. Its boundary ∂en = Sn−1 is the (n− 1)-sphere (for n = 0 we take ∂e0 = ∅). If X is any space
and χ : ∂en → X, one can form a new space X ∪χ en as the pushout :

∂en

i

��

χ
// X

��

en // X ∪χ en

More explicitly, X ∪χ en is the space obtained from the disjoint union X t en by identifying each
i(y) ∈ en with χ(y) ∈ X for all y ∈ ∂en, and equipping the resulting set with the quotient topology.
The universal property of this quotient is a as follows.

Exercise 1. (1) The maps X → X ∪χ en and en → X ∪χ en are continuous and make the
above square commutative. Moreover, the triple consisting of the space X ∪χ en and these
two maps is initial with respect to this property. In other words, for all triples (W, g, h)
consisting of a topological space W and continuous maps g : X →W and h : en →W such
that the outer square in the following diagram commutes

∂en

��

// X

�� g

��

en //

h //

X ∪χ en

∃!
$$H

H
H

H
H

W

then there is a unique dashed arrow X ∪χ en →W such that the two triangles commute.
(2) Define more generally the notion of a pushout for two arbitrary maps A→ X and A→ Y

of spaces with a common domain. Show that the pushout exists and is unique up to a
unique isomorphism in a way which is compatible with the structure maps.

(3) Recall the notion of a pullback from a previous lecture and compare the two notions. These
two notions are dual to each other. Compare also the actual constructions of pushouts and
pullbacks in the category of spaces and see in which sense they are dual.
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(4) The notion of a pushout makes sense in every category but does not necessarily exist. To
familiarize yourself with the concept, show that the categories Set and Ab have pushouts
by giving an explicit construction.

We refer to the space X ∪χ en as being obtained from X by ‘attaching an n-cell’, and call
χ : ∂en → X the attaching map, and en → X ∪χ en the characteristic map of the ‘cell’ en.
Note that this characteristic map restricts to a homeomorphism of the interior of en to its image
in X ∪χ en, i.e., we have a relative homeomorphism (en, ∂en) → (X ∪χ en, X). The image of this
homeomorphism is called the open cell, and the image of en → X ∪χ en the closed cell of this
attachment.

Usually one attaches more than one cell, and writes eσ for the cell with ‘index σ’, sometimes
leaving the dimension implicit. If χ : ∂eσ → X is the attaching map, it is handy to freeze the
index σ, and write χ∂σ for the attaching map, χσ for the characteristic map, and refer to eσ or its
image as the cell (with index) σ.

Thus if we obtain Y from X by attaching a set Jn of n-cells, then, by considering Jn as a discrete
space, we have a pushout diagram of the following form:

Jn × ∂en =
⊔
σ∈Jn ∂e

n
σ

��

// X

��
Jn × en =

⊔
σ∈Jn e

n
σ

// Y

In particular, a subset of Y is open if and only if its preimages in X and each en are open, i.e., Y
carries the quotient topology.

Definition 2. Let X be a topological space. A CW decomposition of X is a sequence of
subspaces

X(0) ⊆ X(1) ⊆ X(2) ⊆ . . . , n ∈ N,
such that the following three conditions are satisfied:

(1) The space X(0) is discrete.
(2) The space X(n) is obtained from X(n−1) by attaching a (possibly) infinite number of n-cells
{enσ}σ∈Jn via attaching maps χσ : ∂enσ → X(n−1).

(3) We have X =
⋃
X(n) with the weak topology (this means that a set U ⊆ X is open if and

only if U ∩X(n) is open in X(n) for all n ≥ 0).

A CW decomposition is called finite if there are only finitely many cells involved. A (finite) CW
complex is a space X equipped with a (finite) CW decomposition. Given a CW decomposition of
a space X then the subspace X(n) is called the n-skeleton of X.

Remark 3. (1) Note that by the very definition a CW complex is a space together with an
additional structure given by the CW decomposition. Nevertheless, we will always only
write X for a topological space endowed with a CW decomposition.

(2) Condition (3) in Definition 2 is only needed for infinite complexes.
(3) From the definition of the weak topology it also follows that closed subsets of X can be

detected by considering the intersections with all skeleta X(n).
(4) The image of a characteristic maps χσ : eσ → X is called a closed cell in X, and the image

of χσ : e◦σ → X an open cell. These need not be open in X! Every point of X lies in a
unique open cell.
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(5) Each X(n) is a closed subspace of X(n+1), and hence of X. (The open (n+1)-cells are open
in X(n+1) but not necessarily in X).

Example 4. (1) The interval I = [0, 1] has a CW decomposition with two 0-cells and one
1-cell by identifying the boundary of the unique 1-cell with the two 0-cells as expected.

(2) The circle S1 has a CW decomposition with one 0-cell and one 1-cell and no other cells. Of
course, it also has a CW composition with two 0-cells and two 1-cells.

(3) More generally, if one identifies the boundary ∂en of the n-ball to a point, one obtains (a
space homeomorphic to) the n-sphere. Thus the n-sphere has a CW decomposition with
one 0-cell and one n-cell, and no other cells. One can also build up the n-sphere by starting
with two points, then two half circles to form S1, then two hemispheres to form S2, and
so on. Then Sn has a CW decomposition with exactly 2 i-cells for i = 0, . . . , n (draw a
picture for n ≤ 2!). If we take the coordinates (x0, . . . , xn) with

∑
x2i = 1 for Sn as before,

these two i-cells are

ei+ = {(x0, . . . , xi, 0 . . . , 0) ∈ Sn | xi ≥ 0}
and

ei− = {(x0, . . . , xi, 0 . . . , 0) ∈ Sn | xi ≤ 0}.
(4) The real projective space RPn, the space of lines through the origin in Rn+1, can be

constructed as the quotient Sn/Z2 where Z2 = Z/2Z acts on the n-sphere by the antipodal
map; in other words, by the quotient of Sn obtained by identifying x and −x. This identi-
fication maps the cell ei+ to ei−. Thus RPn has a CW decomposition with exactly one i-cell
for i = 0, . . . , n. Recall from the previous lecture, that the Grassmannian varieties Gk,n(R)
parametrize k-planes in Rn. Thus, we have RPn ∼= G1,n+1(R).

(5) The complex projective space CPn is the space of complex lines through the origin
in Cn+1. Such a line is determined by a point (z0, . . . , zn) 6= 0 on the line, and for any
scalar λ ∈ C − {0} the tuple (λz0, . . . , λzn) determines the same line for which we write
[z0, . . . , zn]. The line can also be represented by a point z = (z0, . . . , zn) with |z| = 1, so
that z and λz represent the same line for all λ ∈ S1. Thus CPn = S2n+1/S1 is a space of
(real) dimension 2n. There are inclusions

∗ = CP0 ⊆ CP1 ⊆ CP2 ⊆ . . .
where CPn−1 ⊆ CPn sends [z0, . . . , zn−1] to [z0, . . . , zn−1, 0]. An arbitrary point in CPn −
CPn−1 can be uniquely represented by (z0, . . . , zn−1, t) where t > 0 is the real number√

1−
∑
ziz̄i. This defines a map

e2n → CPn : z = (z0, . . . , zn−1) 7→ [z0, . . . , zn−1, t]

with t =
√

1− ||z||. The boundary of e2n (where t = 0) is sent to CPn−1. In this way, CPn

is obtained from CPn−1 by attaching one 2n-cell. So CPn has a CW structure with one
cell in each even dimension 0, 2, . . . , 2n. Similarly to the previous example, we have an
identification CPn ∼= Gk,n+1(C).

(6) Every compact manifold is homotopy equivalent to a CW complex. (This is a theorem
which we only include to indicate the generality of the notion.)

(7) As we will see in a later lecture, every topological space is weakly homotopy equivalent to a
CW complex.

Exercise 5. (1) The torus T can be obtained from the square by identifying opposite sides.
Use an adapted CW decomposition of the square to also turn the torus into a CW complex.
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(2) Similarly we can obtain the Klein bottle from the unit square by identifying (0, t) ∼ (1, t)
and (s, 0) ∼ (1− s, 1). Show that there is a similar CW decomposition of the Klein bottle.

(3) Can you come up with CW decompositions of the torus and the Klein bottle which have
the same number of cells in each dimension? In particular this shows the obvious fact that
the number of cells does not determine the space.

Lemma 6. Let X be a CW complex and let U be a subset of X. Then a subset U ⊂ X is open if
and only if U ∩X(n) is open for each n if and only if χ−1σ (U) ⊆ enσ is open for each cell σ of X.

Proof. The equivalence of the first two statements holds true by definition of CW complexes. It
is immediate that the second condition implies the third one. We want to prove the converse
implication by induction so let us begin by observing that U ∩X(0) is open in X(0) since X(0) is
discrete. For the inductive step, let us assume that U ∩X(n−1) is open in X(n−1) for some n ≥ 1.
Recall that we then have a pushout diagram of the following form:

Jn × ∂en =
⊔
σ∈Jn ∂e

n
σ

��

// X(n−1)

��

Jn × en =
⊔
σ∈Jn e

n
σ

// X(n)

By assumption χ−1σ (U) ⊆ enσ is open for every σ ∈ Jn. But the above pushout diagram together
with the induction assumption then tells us that also U ∩ X(n) is open in X(n) concluding the
proof. �

Thus, given a CW complex X with n-cells parametrized by index sets Jn, then taking all the
attaching maps together we obtain a map

(χσ)n,σ :
⊔
n

Jn × en ∼=
⊔
n

⊔
σ∈Jn

enσ → X.

The above lemma shows that X carries the quotient topology with respect to this map.

Corollary 7. Let X be a CW complex, Y a topological space, and g : X → Y a map of sets. Then
the following are equivalent:

(1) The map g : X → Y is continuous.
(2) The restriction g | : X(n) → Y is continuous for all n ≥ 0.
(3) The map g ◦ χσ : enσ → Y is continuous for each cell enσ.

This corollary allows us to build continuous maps ‘cell by cell’. Thus, not only CW complexes
can be built inductively by attaching cells but the same holds also true for maps defined on a CW
complex. There is also a similar result for homotopies.

Exercise 8. Let X be a CW complex, Y a topological space, and H : X × I → Y a map of sets.
Then H is continuous if and only if each composition

H ◦ (χσ ×idI) : enσ × I → X × I → Y

is continuous for each cell enσ of X.

Before turning to CW subcomplexes and an adapted class of morphisms, let us establish some
more fundamental properties of CW complexes.
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Exercise 9. A CW complex is normal. Thus show that disjoint closed subsets have disjoint open
neighborhoods and that points are closed.

In studying the topology of CW complexes, one often uses the following fact.

Proposition 10. Any compact subset of a CW complex is contained in finitely many open cells.

This proposition in fact immediately follows from the following statement, by choosing a point
in every open cell that intersects non-trivially the given compact subset.

Lemma 11. Let X be a CW complex and A ⊂ X a subspace. If A has at most one point in each
open cell then A is closed in X and the subspace topology on A is discrete.

Proof. We check this by induction on n and for each A∩X(n) as a subspace of X(n) (the closure then
follows by definition of the weak topology on X). For n = 0 there is nothing to prove since X(0) is
discrete. Suppose the statement has been proved for A∩X(n−1) ⊆ X(n−1). Write A∩X(n) = BtC
where B = A∩X(n−1) and C = A∩ (X(n)−X(n−1)). Then C is open in A because the open n-cells
are open in X(n), and for the same reason C is discrete. The set C is closed in X(n) because if
x ∈ C̄ then x lies in the same open cell as any point c ∈ C close to x, hence x = c. So C is
closed and discrete in X(n). Also B is closed and discrete in X(n−1) by induction hypothesis, hence
in X(n) because X(n−1) ⊆ X(n) is closed. Then B t C has the same properties, which completes
the induction step. �

Remark 12. This proposition allows us to explain the terminology ‘CW complex’. In the original
definition given by J.H.C. Whitehead, the following two properties played a more essential role:

(C): The closure of every cell lies in a finite subcomplex (‘closure finite’).
(W): A subset is open if and only if it is open in the n-skeleton for all n (‘weak topology’).

We now turn to an adapted class of morphisms between CW complexes.

Definition 13. A map f : X → Y between CW complexes is cellular if it satisfies f(X(n)) ⊆ Y (n)

for all n. It is immediate that we have a category CW of CW complexes and cellular maps.

Thus, such a cellular map induces commutative diagrams of the form:

X(n)

i

��

f |
// Y (n)

i

��

X
f

// Y

Let us give some examples of cellular maps. We will see in a later lecture that this notion is rather
generic.

Example 14. (1) The vector space Rn maps injectively to Rn+1 by adding a zero as the last
coordinate, i.e., we have a map

in : Rn → Rn+1 : (t1, . . . , tn) 7→ (t1, . . . , tn, 0).

These maps restrict to maps of spheres as follows

jn = in+1 | : Sn → Sn+1

and these maps are cellular with respect to the CW decompositions on the spheres with
precisely two cells in each dimension lower or equal to the dimension of the respective sphere
(but not with respect to the other one).
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(2) Since the inclusions in : Rn → Rn+1 are compatible with the actions by R×, we obtained
induced maps j′n : RPn−1 → RPn which are easily seen to be cellular with respect to the
CW decomposition of Example 4. The maps are also obtained from the maps jn of the last
example by passing to the quotient of the Z/2Z-action and these quotient maps are also
cellular. Thus, we have a diagram of cellular maps:

S0
j0 //

q0

��

S1
j1 //

q1

��

S2
j2 //

q2

��

. . .

RP 0
j′0

// RP 1
j′1

// RP 2
j′2

// . . .

Similarly, in the case of complex numbers, we have cellular maps:

CP 0 → CP 1 → CP 2 → . . .

(3) In Example 4 we introduced two CW decompositions on the n-sphere. Let us write Sn for

the one with two cells in each dimension d ≤ n while we write Ŝn for the one with precisely

one 0-cell and one n-cell. Then the identity map id : Ŝn → Sn is cellular, while this is not

the case for id : Sn → Ŝn if n ≥ 2.

We now turn to subcomplexes of CW complexes.

Proposition 15. Let X be a CW complex and let Y ⊆ X be a closed subspace such that the
intersection Y ∩ (X(n) −X(n−1)) is the union of open n-cells. The filtration

Y (0) ⊆ Y (1) ⊆ . . . ⊆ Y

given by Y (n) = Y ∩X(n) then defines a CW decomposition on Y . Moreover, the inclusion Y → X
is then a cellular map.

This proposition allows us to introduce pointed CW complexes and pairs of CW complexes.

Definition 16. In the notation of the above proposition, we refer to Y as a CW subcomplex
of X and to (X,Y ) as a CW pair. A pointed CW complex (X,x0) is a CW complex X together
with a chosen base point x0 ∈ X(0).

In the obvious way, this gives us the category of pointed CW complexes and CW pairs whose
definitions are left to the reader.

Example 17. (1) For an arbitrary CW complex X, we have CW pairs (X,X(n)) for all n and
similarly (X(n), X(m)) for n ≥ m.

(2) We have CW pairs (Sn, Sm), (RPn,RPm) and similarly in the complex case for n ≥ m. If
we endow the unions

S∞ =
⋃
n

Sn, RP∞ =
⋃
n

RPn, and CP∞ =
⋃
n

CPn

with the weak topology then each of the three spaces carries canonically a CW structure.
Moreover, we have CW pairs (S∞, Sn), (RP∞,RPn). and (CP∞,CPn) for all n.

Exercise 18. Let (X,Y ) be a CW pair. Then the quotient space X/Y can be turned in a CW
complex such that the quotient map X → X/Y is cellular.
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We will now establish a few more closure properties of CW complexes. Let us begin with a more
difficult one, namely the product. Recall that we observed that each CW complex is obtained from
a disjoint union of cells by passing to a quotient space. Namely, for a CW complex X we have a
quotient map: ⊔

n

Jn × en → X

Given two CW complexes X and Y one might now try to take two such presentations⊔
n

Jn(X)× en → X and
⊔
m

Jm(Y )× em → Y

and use homeomorphisms en × em ∼= en+m to obtain a map⊔
k

Jk(X × Y )× ek → X × Y

where Jk(X ×Y ) = tn+m=kJn(X)×Jm(Y ). However, this map is, in general, not a quotient map.
More conceptually, the problem is that the formation of products and quotients in the category of
spaces are not compatible in general. Nevertheless, under certain ‘finiteness conditions’ one can
obtain a positive result. We will give a proof of this result in a later lecture.

Proposition 19. Let X,K be CW complexes such that K is finite. Then the product X × K is
again a CW complex with the above CW decomposition.

Proof. Will be given in a later lecture. �

Using the last proposition we can establish many more closure properties for the class of CW
complexes.

Corollary 20. (1) The coproduct of two CW complexes is again a CW complex such that the
inclusions of the respective summands are cellular.

(2) Given a CW complex X then the cylinder X × I is again a CW complex. For each n-
cell enσ of X we obtain three cells for X × I, namely two n-cells enσ × {0}, enσ × {1}, and an
(n + 1)-cell enσ × e1. Moreover, the cylinder comes with cellular maps i0, i1 : X → X × I
and p : X × I → X.

(3) Given a CW complex X, then the unreduced suspension SX = (X × I)/(X × ∂I) is again
a CW complex.

(4) We have similar variants for the context of pointed CW complexes. The wedge product of
pointed CW complexes is again a CW complex. Similarly, the reduced cylinder of a pointed
CW complex is again a pointed CW complex. More generally, if K is a finite pointed
CW complex and if X is a pointed CW complex, then so is the smash product X ∧ K.
In particular, the (reduced) suspension of a pointed CW complex is again a pointed CW
complex.

Proof. The first statement is immediate while the other ones follow immediately from Exercise 18,
Proposition 19, and Example 4. �

In the definition of a CW complex X, the first condition we imposed was that X(0) is to be
a discrete space and then that the higher skeleta are obtained from the lower ones by attaching
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n-cells for n ≥ 1. We can also think of X(0) as being obtained from the empty space by attaching
0-cells; in fact, using the convention that ∂e0 = ∅ we have a pushout:

X(0) × ∂e0 =
⊔
σ∈X0

∂e0σ

��

∼= // X(−1) = ∅

��

X(0) × e0 =
⊔
σ∈J0 e

0
σ ∼=

// X(0)

This observation is more than only a rather picky remark since it motivates the following general-
ization of the notion of CW complex.

Definition 21. Let (X,A) be a pair of spaces. Then X is a CW complex relative to A, if there
is a filtration of X,

A = X(−1) ⊆ X(0) ⊆ X(1) ⊆ . . . ⊆ X,
such that the following two properties are satisfied:

(1) The space X(n) is obtained from X(n−1) by attaching n-cells for n ≥ 0.
(2) The space X is the union

⋃
n≥−1X

(n) endowed with the weak topology.

In this situation, the pair (X,A) is called a relative CW complex.

Example 22. (1) Let X be a CW complex and x0 ∈ X0. Then we have a relative CW complex
(X,x0).

(2) More generally, every CW pair is a relative CW complex.

One point of the notion of a relative CW complex (X,A) is that the associated inclusion map
A→ X is not an arbitrary map but has nice properties. In a way, these properties are dual to the
ones of fibrations. We will come back to this in the next lecture where we will, in particular, talk
about cofibrations.


