
SECTION 9: CELLULAR APPROXIMATION

The aim of this section is to give a proof of the cellular approximation theorem. One
formulation of this theorem is that every map between CW complexes is homotopic to a cellular
map (but we will also see a version for CW pairs). Recall that a map of CW complexes is cellular if
it restricts to a map of n-skeleta for all n. Thus, such a cellular map does not increase the dimension
of cells. The proof of this theorem is rather involved and will occupy the bulk of this section. The
main work will be to establish Lemma 4 which covers a particular case. In the next section we will
use the cellular approximation theorem in order to deduce the famous ‘Whitehead’s theorem’.

Before we begin with the cellular approximation theorem, let us recall a fact from point-set
topology. In general, it is not true that the formation of quotient spaces and products would be
compatible. More precisely, let q : X → Y be a map exhibiting Y as a quotient of X. In particular,
a subset of Y is open if and only if the preimage q−1(U) is open in X. If Z is an arbitrary space,
then, in general, we can not conclude that the map q × idZ : X × Z → Y × Z is a quotient map.
However, there is the following fact.

Lemma 1. Let q : X → Y be a quotient map and let K be a compact space. Then also the
map q × idK : X ×K → Y ×K is a quotient map.

We will be particularly interested in the following situation. Let X be a CW complex. The n-
skeleton X(n) of X is obtained from the (n − 1)-skeleton by attaching a set of n-cells. Thus, we
have a quotient map

qn : X(n−1) t Jn × en → X(n).

If we form the product of this map with the identity of I = [0, 1] then the previous lemma implies
the following.

Corollary 2. Let X be a CW complex. Then there is a quotient map

qn × idI : X(n−1) × I t Jn × en × I → X(n) × I.
Let us immediately give the statement of the cellular approximation theorem.

Theorem 3. Let (X,A) be a CW pair, let Y be a CW complexes, and let f : X → Y be a map of
spaces. If f |A : A→ Y is cellular, then f is homotopic to a cellular map g : X → Y relative to A.
In particular, any map of CW complexes is homotopic to a cellular one.

Since CW complexes are built inductively, the following strategy will not come as a surprise.
Given a map f : X → Y of CW complexes, we will try to deform f cell by cell into a cellular map.
As an important building block for the proof of the theorem, there is the following case of a single
cell.

Lemma 4. Let Y be obtained from B by attaching an n-cell, i.e., assume that we have a pushout
diagram of the form

∂Dn

��

// B

��

Dn
χ

// Y

1
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Then any map f : (Dm, ∂Dm) → (Y,B) with m < n is homotopic relative to ∂Dm to a map g
satisfying g(Dm) ⊆ B.

Proof. The proof of this lemma will be given at the end of this section. �

Let us now use this lemma to give a proof of the cellular approximation theorem. As usual, given
a CW complex Y , the skeleton filtration will be denoted by

Y (0) ⊆ Y (1) ⊆ Y (2) ⊆ . . . , n ∈ N.

Proof. (of Theorem 3 (using Lemma 4)) Thus, we are given a map g−1 = f : X → Y which
restricts to a cellular map on A = X(−1). We will inductively construct maps gn : X → Y and
homotopies Hn : gn−1 ' gn for n ≥ 0 such that

(1) The map gn sends the relative n-cells,i.e., the ones given by the index set Jn(X)− Jn(A),
to Y (n).

(2) The homotopy Hn : gn−1 ' gn is relative to X(n−1).

Recall that a CW pair is, in particular, a relative CW complex so that we have a filtration

A = X(−1) ⊆ X(0) ⊆ X(1) ⊆ . . . ⊆ X,

which has the following two properties:

(1) The space X(n) is obtained from X(n−1) by attaching n-cells for n ≥ 0.
(2) The space X is the union

⋃
n≥−1X

(n) endowed with the weak topology.

Let us assume inductively that we are already given the map gn−1, and let us construct gn and Hn.
Now, denoting the set of relative n-cells by Jn, there is a pushout diagram

Jn × ∂en =
⊔
σ∈Jn ∂e

n
σ

��

// X(n−1)

��

Jn × en =
⊔
σ∈Jn e

n
σ

(χσ)σ

// X(n).

Let us assume that there are cells σ ∈ Jn such that gn−1(enσ) is not contained in Y (n) (otherwise
we set gn = gn−1 and take Hn to be the constant homotopy). For each such cell enσ, there is a
finite relative subcomplex Y ′ with Y (n) ⊆ Y ′ ⊆ Y such that gn−1(enσ) ⊆ Y ′. Take a cell of maximal
dimension in Y ′ which has a nontrivial intersection with gn−1(enσ). Then Lemma 4 tells us that
this cell can be avoided up to relative homotopy. Repeating this finitely many times and gluing the
relative homotopies together, we obtain a homotopy Hn,σ : gn−1 ' gn,σ : enσ → Y relative to ∂enσ
such that gn,σ(enσ) ⊆ Y (n). Recall from Corollary 2 that X(n) × [0, 1] carries the quotient topology
with respect to the map

X(n−1) × [0, 1] t Jn × en × [0, 1]→ X(n) × [0, 1].

Thus, we can glue the homotopies Hn,σ, the constant homotopies on gn−1 : enσ → Y for all n-cells

with gn−1(enσ) ⊆ Y (n), and the constant homotopy on gn−1|X(n−1) together in order to obtain a
homotopy

H̃n : gn−1|X(n)' g̃n : X(n) × [0, 1]→ Y.
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From these data we can form the following extension problem

X × {0} ∪X(n) × [0, 1]

��

(gn−1,H̃n)
// Y

X × [0, 1]
∃Hn

::

e h j
m

p
t

which admits a solution since the inclusion X(n) → X is a cofibration. It only remains to set
gn = Hn(−, 1) in order to conclude the inductive step.

If the CW complex X is finite-dimensional, i.e., if X(n) = X for some n ≥ 0, then we are
done since it suffices to compose the finitely many homotopies Hk, 0 ≤ k ≤ n, to obtain a homo-
topy H : f ' g = gn relative to A such that g : X → Y is a cellular map.

For an infinite-dimensional CW complex we can conclude by the following argument. In that case
we have to check that these infinitely many homotopies can be assembled into a single homotopy
H : X×I → Y . In fact, as the homotopies Hn are relative to X(n−1), it follows that Hk is stationary
on X(n−1) for k ≥ n. Thus, we define H on X(n−1) by first running through H0 at a double speed,
then through H1 at a fourfold speed, through H2 at an 8-fold speed, and so on. After having run
through Hn−1, the map H |X(n−1) is defined to be stationary. We leave it to the reader to check
that this way we obtain a continuous map H : X× I → Y . From the definition it is immediate that
H is a homotopy relative to A such that g = H(−, 1) : X → Y is a cellular map as intended. �

Corollary 5. The homotopy groups πk(Sn, ∗) are trivial for all 1 ≤ k < n.

Proof. Let us endow Sn with the CW structure consisting of a unique 0-cell and a unique n-cell.
By Theorem 3, any map f : Sk → Sn is homotopic to a cellular map g : Sk → Sn. But, for k < n
we have that the k-skeleton of Sk is the entire k-sphere, while the k-skeleton of Sn consists of a
point only. Thus, g is a constant map and we are done. �

We will see more applications of the cellular approximation theorem as the course goes on. In
the remainder of this section we give a proof of Lemma 4.

Proof. (of Lemma 4 (not using Theorem 3)) The proof will be given by induction over n, the
dimension of the cell attached to B. Let us first establish the case of n = 1. Thus, m = 0 and
hence ∂Dm = ∅ and Dm = ∗. A map f = κy : (∗, ∅) → (Y,B) is essentially the same as a point y
in Y . There is a path ω : I → Y with ω(0) = y and ω(1) = b ∈ B. This path defines the desired
homotopy f = κy ' κb = g.

Before performing the induction step, let us describe the strategy of the proof. The attaching
map χ : Dn → Y restricts to a homeomorphism from the interior of the disc onto its image in Y .
The main work consists in showing that we can construct a homotopy f ' h relative to the
boundary ∂Dm such that h omits the origin of the interior of the attached disc. To see that this
is enough, let us denote by Y − {o} the space which we obtain from Y by removing that origin. It
is easy to see that i : B → Y − {o} is the inclusion of a strong deformation retraction (induced by
collapsing the punctured n-disc Dn−{o} onto Sn−1). Part of this strong deformation retraction is
a homotopy

idY−{o} ' i ◦ r relative to B

which induces the desired relative homotopy h = id ◦h ' i ◦ r ◦ h = g relative to ∂Dm. Putting
these two homotopies together we conclude that f ' g relative to ∂Dm as intended.
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Let us now assume inductively that we already established the lemma for n−1. Before attacking
the induction step, we list the following consequences of our inductive assumption:

(1) Any map Sk → Sn−1 as well as any map Sk → Sn−1 × (a, b) for k < n− 1 is homotopic to
a constant map.

(2) Any map Sk → Sn−1 × (a, b), k < n− 1, can be extended to a map on Dk+1.

In fact, the first case of the first point is established by an application of the lemma for n − 1 to
the map (Dk, ∂Dk) → (Dn−1 ∪∂Dn−1 ∗, ∗) which corresponds to our given map Sk → Sn−1. The
second case of that point follows immediately from the first one together with the contractibility of
the interval. Finally, the second point follows from the fact that a map is homotopic to a constant
map if and only if it can be extended over the cone of its domain.

Thus, it remains to construct a homotopy f ' h : Dm → Y relative to ∂Dm such that h does
not hit the origin. This will be done by a rather elaborate application of the lemma of Lebesgue to
an adapted open cover of Dm. We begin by constructing an open cover of Y . For this purpose, let
us introduce notations for the subsets

U ′ = {x ∈ Dn | 0 ≤ ‖x‖ < 2/3} and V ′ = {x ∈ Dn | ‖x‖ > 1/3}

and let us define two subsets of Y by setting

U = χ(U ′) and V = B ∪∂Dn χ(V ′)

where χ : Dn → Y is the characteristic map of the n-cell. The aim is to construct a relative
homotopy f ' h such that the image of h entirely lies in V , and hence, in particular, avoids the
point o ∈ Y .

By construction, U and V define an open cover of Y . Since χ induces a homeomorphism when
restricted to the interior of the n-disc, we obtain a homeomorphism

U ∩ V ∼= Sn−1 × (1/3, 2/3)

so that we can later apply the second consequence above to U ∩ V .
Using our favorite homeomorphism of pairs (Im, ∂Im) ∼= (Dm, ∂Dm), we are thus in the following

situation:

f : Im
∼= // Dm

f
// Y

f : ∂Im

⊆

OO

∼=
// Sm−1

f
//

⊆

OO

B

⊆

OO

Pulling back the open cover of Y along f induces an open cover f−1(U), f−1(V ) of the compact
metric space [0, 1]m. The lemma of Lebesgue guarantees the existence of a natural number N > 0
such that the image of each m-cube

Imk1,...,km = [k1/N, (k1 + 1)/N ]× . . .× [km/N, (km + 1)/N ], 0 ≤ ki < N,

under f lies in U or in V . We now want to construct relative homotopies to modify f on those
sub-cubes of the Imk1,...,km which are not entirely mapped to V while we want to keep it unchanged
on the remaining sub-cubes.

For this purpose, let us define a filtration on X = Im,

∂Im ⊆ X(−1) ⊆ X(0) ⊆ . . . ⊆ X(m) = X = Im,
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as follows. Let J−1 be an index set for all l-sub-cubes, 0 ≤ l ≤ m, of Imk1,...,km , 0 ≤ ki < N, which
are already completely mapped to V by f . Let us denote the l-sub-cube corresponding to such an
index φ ∈ J−1 by I lφ. We then set

X(−1) =
⋃

φ∈J−1

I lφ,

and it follows from our assumption on f that ∂Im ⊆ X(−1). We now have to take care of the
remaining sub-cubes and this will be done by induction over the dimension of these sub-cubes.
Thus, for each 0 ≤ k ≤ m, let Jk = {φ} be an index set for all k-dimensional sub-cubes Ikφ of the

cubes Imk1,...,km which satisfy f(Ikφ) * V . We then inductively set

X(k) = X(k−1) ∪
⋃
φ∈Jk

Ikφ .

By definition, this gives us an exhaustive filtration of X = Im (which, in fact, defines a relative
CW complex (X,X(−1))).

We now want to inductively construct maps hk : X(k) → Y, k ≥ −1, such that:

(1) The map h−1 is obtained from f by restriction.
(2) The map hk sends the cubes Ikφ to U ∩ V for all φ ∈ Jk and k ≥ 0.

(3) The map hk extends hk−1, i.e., we have hk |X(k−1)= hk−1 for all k ≥ 0.

For h0, note that X(0) is obtained from X(−1) by possibly adding some vertices which are mapped
to U . For each such vertex, choose a path to a point in U ∩ V . These target points together
with h−1 then define the map h0. For the inductive step, let us assume that hk−1 has already been
constructed. For each φ ∈ Jk, we have that hk−1(∂Ikφ) ⊆ U ∩ V (there are two different arguments

for the two types of faces, one of them using that N ∈ N was chosen to be adapted to f−1(U)
and f−1(V )). Recall that by construction we have a homeomorphism U ∩ V ∼= Sn−1 × (1/3, 2/3)
so that we can our inductive assumption to find extensions as indicated in the following diagram:

∂Ikφ

��

hk−1
// U ∩ V

Ikφ
hk,φ

GG

h m
z

	
�

It is easy to see that these maps hk,φ and hk−1 can be assembled together in order to define a

map hk : X(k) → Y with the desired properties. If we set h = hm : Im = X(m) → Y then we
have h(Im) ⊆ V . Hence it suffices to show that f ' h relative to ∂Im.

We will in fact show that we can construct such a homotopy relative to X(−1). By construction,
both maps f and h coincide on X(−1). Moreover, the restrictions of both maps to X−X(−1) can be
considered as maps taking values in U . But, U is homeomorphic to an open n-disc, hence convex,
so that the two restrictions are homotopic via linear homotopies. This homotopy together with
the constant homotopy on X(−1) can be assembled together to give the desired homotopy f ' h
relative to X(−1) concluding the proof. �


