SECTION 10: CW APPROXIMATION AND WHITEHEAD’S THEOREM

In this section we will establish the two important theorems showing up in the title. The first of
them, the theorem on the existence of CW approximations (Theorem 7), emphasizes the importance
of CW complexes: up to weak equivalence any space can be replaced by a CW complex. Thus,
if one is only interested in spaces up to this notion of equivalence, then it is enough to deal with
CW complexes. The second theorem, the celebrated Whitehead theorem (Theorem 17), tells us
that CW complexes are better behaved than arbitrary spaces in the following sense. The notions of
weak homotopy equivalence and (actual) homotopy equivalence coincide if we only consider maps
between CW complexes.

In both theorems the notion of a weak homotopy equivalence plays a key role so let us begin by
introducing that concept.

Definition 1. A map of spaces f: X — Y is a weak homotopy equivalence if the induced maps
fer me(X, 0) = (Y, f(0))

are bijections for all dimensions k and all base points g € X.

Note that we insist that we have isomorphisms of homotopy groups for all points zy € X. If one
weakens this condition by considering a single base point only, then one obtains a different notion
which we do not want to axiomatize here. The good notion is the one given above. Of course, the
motivation for the terminology stems from the first point in the following exercise.

Exercise 2. (1) Let f: X — Y be a homotopy equivalence. Then f is a weak equivalence.
(Note that the functoriality of the homotopy groups does not suffice to solve this part!)
(2) Let f: X =Y, g: Y — Z be maps of spaces, and let h = gf: X — Z be their composition.
Show that if two of the maps f, g, and h are weak equivalences then so is the third one.
(3) Two spaces X and Y are called weakly equivalent if there are finitely many weak equiv-
alences

X =Xo X1 Xg——cnens X1 X,=Y

pointing possibly in different directions which ‘connect’ X and Y. Check that this is an
equivalence relation. The equivalence classes with respect to this equivalence relation are
called weak homotopy types.

(4) More generally, consider a relation R C S x S. Define explicitly the equivalence relation
~p on S generated by R, i.e., the smallest equivalence relation which contains R. Relate
this to the previous part of the exercise (ignore set-theoretical issues for this comparison!).

There are the following classes of maps which allow us to measure how far a map is from being
a weak equivalence.

Definition 3. Let f: X — Y be a map of spaces and let n > 0. Then f is an n-equivalence if
for all ¢y € X the induced map

f*: ’/Tk(Xa xO) — Wk(Y7f(x0))

is bijective for k£ < n — 1 and surjective for k = n.
1
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Thus, a map of spaces is a weak equivalence if and only if it is an n-equivalence for all n > 0. An
interesting class of examples for this notion is given by the inclusions which are part of the skeleton
filtration of a CW complex.

Lemma 4. Let X be a CW complex and let ip,: X — X be the inclusion of the n-skeleton.
Then i, s an n-equivalence.

Proof. This follows from a repeated application of the cellular approximation theorem. In order
to obtain the surjectivity, consider a class o € 7 (X, *) which can be represented by a cellular
map S* — X. Thus, for all k¥ < n, we can find a representative which factors over 4, : X — X
showing that « lies in the image of ip, : mx(X (™), %) — (X, *).

For the injectivity, consider two classes «, 8 € wk(X("),*) for £ < n, and represent them
by cellular maps f: S¥ — X and ¢: S¥ — X respectively. By assumption, we can find a
homotopy

H:S*xI1—-X, H:f~g.
Since I is compact, the space S* x I is again a CW complex, and, by the explicit description of
the CW structure, the subspace S*¥ x 91 is a subcomplex. Now, the homotopy is a map which is
already cellular on this subcomplex. Thus, an application of the cellular approximation theorem
implies that we can find a cellular map H': S*¥ x I — X which restricts to f and g on the boundary
components. Thus, this map factors over the inclusion i,, showing that @ = § as intended. (Il

Exercise 5. Let (X, xg) be a pointed, connected space, Y an arbitrary space, and n > 0. Then a
map f: X — Y is an n-equivalence if and only if the induced map

f* : Wk(Xa 330) - 7-‘-k(}/) f(xo))
is bijective for k < n — 1 and surjective for k = n.
Let us now show that up to weak equivalence every topological space is a CW complex.

Definition 6. A CW approximation of a topological space X is a CW complex K together with
a weak equivalence f: K — X.

Theorem 7. (Existence of CW approximations) Every space has a CW approzimation.

Proof. Let X be an arbitrary space. We can assume that the space X is path-connected by con-
structing a CW approximation for each path-component separately. It is easy to see that these CW
approximations then assemble to one for the entire space.

We will now give an inductive construction of a CW approximation of X. More precisely, we
will first construct n-equivalences

fTL:Kn_>Xa n >0,

for certain n-dimensional CW complexes K,, and then show that these maps can be assembled to
a CW approximation f: K — X.

In dimension n = 0 we let Ky = * be a single point and let fy: Ky — X be the inclusion of an
arbitrary point of X which obviously is a 0-equivalence. Let us assume inductively that we have
already constructed an n-equivalence f,,: K, — X with K,, an n-dimensional CW complex. We
will construct the map f,,+1 in two steps. First let us take care of the possibly non-trivial kernel

Ap = ker (fn* Wn(Knv *) - Wn(Xv *))
Choose an arbitrary set of generators (a,)qe Tl for the group A,. Each generator can be rep-
resented by a map x,: 9¢"™! — K,,, and by definition of A, we can choose homotopies H,, ,
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from f,, o x, to a constant map. Now, construct the intermediate space K], by attaching (n+1)-
cells to K, as follows:

Ty x dentt X7y g

L]

/ +1 ’
Ty x et — 5 K

n

This way we obtain an (n + 1)-dimensional CW complex K], such that i/,: K, — K, is
the inclusion of the n-skeleton. Since K7, is endowed with the quotient topology, it is easy to
see that the homotopies H, , and the map f, together induce a map f) ,: K/ ,; — X such
that f,,, oi, = f,. By Lemma 4 we know that i/, is an n-equivalence, as is f, by inductive
assumption so that the same is also true for f; ;. Moreover, we can use the cellular approximation

theorem to conclude that the induced map
f7/z+1* : 7T7’L(K7lz+1’ *) — ﬂ-n(X7 *)

is also injective. In fact, given an element o’ in the kernel of that map, then there is a cellular
map S™ — K, representing that class which hence factors as S™ — K,, — K], ;. We leave it to
the reader to conclude from here that o’ is trivial.

We next address the problem that the induced map might not be surjective in dimension n + 1.
Thus, let us consider the possibly non-trivial cokernel

Bpy1 = coker(frq,: Tny1(Kp s %) = g1 (X, )

and let (b(,),,EJgJr1 be a set of generators of By, 1. Define K, 11 to be the wedge

Kny1 =K1 V \/ s

"
O-E‘]n#»l

Alternatively, this can also be described as an attachment of (n + 1)-cells using constant attaching
maps, i.e., we have a pushout diagram

(k)
J;L/+1 x fentt —= 1

T

1
(Rt —

In both descriptions (using the usual homeomorphism e"*!/9e"™1 =2 9e™*2 in the second one),

the generators b, together with the map f, 41 can be assembled to define a map fr41: Kpp1 — X
which satisfies fp1 04 = f;,1: K],,; = X and hence

fn+loin:fn: K,—X

where i, = 4], oiy,: K;, = K], 1 — K, y1. We leave it to the reader to check that f,, 4, is an (n+1)-
equivalence.

Thus, we have constructed n-dimensional CW complexes K, together with n-equivalences f,
and inclusions 4, : K,, — K, 41 which are compatible with the n-equivalences. Let us denote by K
the union | J,, K, endowed with the weak topology. Then it is easy to see that K is a CW complex
(with a single O-cell and the set of n-cells given by J,, = J/ U J} for n > 1) such that its n-skeleton
is given by K(") = K,,. The maps f, induce a unique map f: K — X such that flk, = fn. The
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final claim is that f is a weak equivalence which we also leave to the reader (a further application
of the cellular approximation theorem!). O

Exercise 8. Conclude the proof of Theorem 7 by establishing the following three steps (we use the
notation of the proof):

(1) The map f), ., : T (K], %) = T, (X, *) is injective (and hence a bijection).

(2) The map fri1: Knr1 — X constructed in the induction step is an (n + 1)-equivalence.
(3) The map f: K — X is a weak equivalence.

Perspective 9. We thus showed that every space is up to weak homotopy equivalence a CW
complex. One might wonder if there is a functorial way of doing this. The first step would consist
of the following problem. Let X — Y be a map of spaces and let K — X and L — Y be CW
approximations of X and Y respectively. Can we then find a map K — L such that the following
diagram commutes:

K— X

I
371 l
3
L——Y

The first partially affirmative answer to this question (which lies only slightly beyond the scope of
this course) is the following: we can always achieve this if we only insist that the square commutes
up to homotopy, i.e., if we are asking for the existence of such a map such that both compositions
are homotopic.

The second affirmative answer is even more positive. A construction of such a functorial CW
approximation can be given using ‘simplicial methods’. Given a space X one would consider all
maps A" — X for the various n > 0 where A" is the geometric n-simplex, i.e., the convex hull of
the n + 1 standard basis vectors of R"*!. For each n, one can single out a suitable subset J,, C
homTep(A™, X) such that these sets serve as index sets for a suitable CW complex. It can then be
shown that these CW complexes are part of functorial CW approximation.

The ‘simplicial methods’ alluded to in the second affirmative answer are very powerful and show
up in many areas of mathematics. In particular, the so-called simplicial sets —introduced in the
1950’s— provide an interesting, purely combinatorial approach to homotopy theory whose impor-
tance in modern homotopy theory (and in other areas of mathematics) can hardly be overestimated.

The mapping cylinder construction allowed us in a previous lecture to show that every map can
be factored into a cofibration followed by a strong deformation retraction. We would like to have
a refinement of this result for the case of a cellular map between CW complexes. Recall that the
mapping cylinder My of a map f is given by the following pushout construction:

x—1 oy
X x I — My

Proposition 10. The mapping cylinder My of a cellular map f: X — Y is again a CW complex
which contains both X and 'Y as subcomplezes.

Proof. We will not give a proof of this result but instead refer the reader to the book ‘Cellular
structures in topology’ by Rudolf Fritsch and Renzo Piccinini. |
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With this preparation we now obtain the following refinement of the factorization result.

Corollary 11. Any cellular map can be factored as the inclusion of a CW subcomplex followed by
a strong deformation retraction.

A space is path-connected if any two points can be connected by a path, i.e., if my applied to the
space gives us a one-point set. Similarly, a space is called simply connected, if it is path-connected
and has a trivial fundamental group (by the action of the fundamental groupoid it is not important
which base point we consider). Let us generalize these definitions to higher dimensions.

Definition 12. A space X is n-connected if 7 (X, zg) = * for all £ <n and all zy € X.

There is also a variant for pairs of spaces (X, A). Given an arbitrary point ag € A we gave a
definition of 7, (X, 4, ag) = m,(X, A) in the case that n > 1. For n > 2 these are naturally groups
which are abelian if n > 3. In fact, the definition of the underlying pointed set of m, (X, A) was as
the set of homotopy classes of maps of triples

T (X, A) = [(I", 01", J" 1), (X, A, ap)]
where J"1 = "1 x {0} UdI"~! x I C JI"™ C I"™. There are homeomorphisms I"/J"~! = D»
and 9I™/J"~1 = §"~1 and using these it is easy to show that we have natural bijections

(X, A) 2 (D™, 5" %), (X, A, a0)].

Motivated by the long exact homotopy sequence of a pointed pair, let us say that mo(X, A) & x
if the map (A4, ag) — (X, ag) is surjective, i.e., if each path-component of X has a non-trivial
intersection with A.

~

Definition 13. A pair of spaces (X, A) is n-connected if m;(X, A,ag) = * for all k¥ < n and for
all ag € A.

We leave it as an exercise to establish the equivalence of the following statements.

Exercise 14. Let (X, A) be a pair of spaces and let n > 0. Then the following are equivalent:
(1) Every map (D", 8" 1) — (X, A) is homotopic relative to S*~! to a map D™ — A.
(2) Every map (D", 8" 1) — (X, A) is homotopic through such maps to a map D" — A.
(3) Every map (D", 8" ') — (X, A) is homotopic through such maps to a constant map.
(4) We have 7, (X, A, ag) = (X, A) =0 for all ap € A.

This exercise is the basic building block for the following lemma which in turn is the key step
towards the Whitehead theorem.

Lemma 15. Let (X, A) be a relative CW complez and let (Y, B) be a pair of spaces with B # () and
such that m, (Y, B) = 0 for all dimensions such that X — A has n-cells. Then any map f: (X, A) —
(Y, B) is homotopic relative A to a map with image in B.

Proof. By assumption we have a filtration of X,

A=XxXDecx®OcecxWce. . cx

such that the following two properties are satisfied:

(1) The space X () is obtained from X (=1 by attaching n-cells for n > 0.
(2) The space X is the union U7271 X endowed with the weak topology and hence comes,

in particular, with continuous inclusions i, : X (") — X.
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The plan is to inductively construct intermediate maps g,: X — Y such that g, (X (")) C B and
homotopies H,,: g, ~ gn_1 relative to X (n=1) " We will then show how to conclude from here.
By assumption the restriction f_;: A = X(=1 — Y already satisfies f_1(A) C B so that we set
g-1=f-1.

Now let us assume inductively that maps g and homotopies Hy have already been constructed
for k < n and let X — A have n-cells (otherwise the induction step is trivial) which we then index
by a set J,. For each o € J,, let x,: € — X be an attaching map of the cell so that the square
on the left is a pushout diagram:

J,, X Oe™ SO xn-1) " p

L1

n n (n)
Jn x € (xo) X gn—1 Y

Now, each characteristic map induces an element g,,—1 o x,: (", 9¢™) — (Y, B). Since by assump-
tion 7, (Y, B) = 0 we can use Exercise 14 to obtain a homotopy fIn,g: e" x I — Y relative Oe”
from g,—1 0 Xo: €” — Y to a map g, which factors as e — B — Y. These homotopies together
with the constant homotopy of g,_1 can be assembled to define a homotopy

H,: X™ x> Y: In-1 2 gn relative to X (™~ with gn(X(”)) C B.

Since the inclusion i: X(™ — X is a cofibration, we can find a lift in the following diagram

(gn1,Hn): X x {0} UX™ x [ ——Y

7
—~
- H

XxI ~ "

Setting g, = H,(—,1): X = Y concludes the inductive step of the construction.

It remains to check that these infinitely many homotopies can be assembled into a single homo-
topy H: X x I — Y. In fact, as the homotopies H, are relative to X (™~ it follows that Hj, is
stationary on X (=1 for k > n. Thus, we define H on X(~1 by first running through Hy at a
double speed, then through H; at a fourfold speed, etc. We leave it to the reader to check that this
way we obtain a continuous map H: X X I — Y. From the definition it is immediate that H is a
homotopy relative to A and such that H(X,1) C B as intended. ([l

As an immediate consequence of this we collect the following convenient result.

Corollary 16. Let (X, A) be a relative CW complex such that the inclusion i: A — X is a weak
homotopy equivalence. Then i is the inclusion of a strong deformation retract.

Proof. Apply the lemma to the identity morphism of (X, A). |

We can now use this lemma to establish the celebrated ‘Whitehead’s theorem’.

Theorem 17. (Whitehead’s theorem) Let f: X — Y be a weak equivalence between CW com-
plexes X and Y. Then f is a homotopy equivalence. If f is the inclusion of a CW complex, then f
is the inclusion of strong deformation retract.
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Proof. We leave it to the reader to reduce to the case of a path-connected CW complex. By the
cellular approximation theorem we can assume that f is a cellular map. Moreover, the mapping
cylinder construction allows us to assume that f = i: X — Y is the inclusion of a subcomplex.
The long exact sequence of homotopy groups of the pair (Y, X) implies that all relative homotopy
groups 7, (Y, X) vanish. Thus the previous lemma applied to the identity id: (Y, X) — (Y, X)
implies that id ~ i o r relative to X for some map r: Y — X. Thus, this map r satisfies r|x= i,
i.e., roi=1idy. It follows that the map i: X — Y is the inclusion of a strong deformation retract,
hence, in particular, a homotopy equivalence. O

Thus, from the knowledge about the behavior of a map at the level of homotopy groups we can
actually construct a map in the converse direction. This indicates that the collection of invariants
given by the homotopy groups at all points is very powerful.

Warning 18. Note however that the Whitehead theorem does not imply that two CW complexes X
and Y are homotopy equivalent as soon as the corresponding homotopy groups 7, (X) and 7, (Y)
are isomorphic for all n > 0. To put it differently, it does not suffice to have abstract isomorphisms
of these groups. Instead, it is essential that these isomorphisms are —at least in one direction—
induced by an actual map of spaces.

A close inspection of the proof of Theorem 7 shows that we also have the following refined version.

Corollary 19. Let X be a n-connected space. Then there is a CW approzimation K — X such
that K has a trivial n-skeleton, i.e., such that K™ = x.

A combination of this corollary with Whitehead’s theorem gives the following nice fact.

Corollary 20. A n-connected CW complex is homotopy equivalent to a CW complex with trivial n-
skeleton.

In the exercises, you will be asked to proof these two results. Using similar methods as above,
one can also establish the following relative version of Whitehead’s theorem.

Theorem 21. (relative version of Whitehead theorem)
Let f: (X, A) = (Y, B) be a weak equivalence of relative CW complexes such that f: A — B is a
homotopy equivalence. Then f: (X, A) — (Y, B) is a homotopy equivalence of pairs.



