
CW complexes

Soren Hansen

This note is meant to give a short introduction to CW complexes.

1. Notation and conventions

In the following a space is a topological space and a map f : X → Y between topological spaces
X and Y is a function which is continuous. If X is a space, then a subspace of X is a subset A ⊆ X
with the relative (or induced) topology (induced by the topology in X). The n-dimensional disk
(just called the n-disk in the following) is the following subspace of Rn:

Dn = { x ∈ Rn : |x| ≤ 1 },
where | · | : Rn → [0,∞[ is the standard norm on Rn. Thus the n-disk is the closed n-disk and is a
closed subset of Rn. The open n-disk, denoted int(Dn), is the interior of Dn in Rn. Thus

int(Dn) = { x ∈ Rn : |x| < 1 }.
The boundary of Dn in Rn is the standard (n− 1)-sphere

Sn−1 = { x ∈ Rn : |x| = 1 }.
We note that the 0-disk D0 is equal to R0 = {0} by definition. We have int(D0) = D0 = {0}.

A topological space X is called quasi-compact if every open cover of X has a finite subcover, i.e.
whenever {Ui}i∈I is a family of open subsets of X s.t. X = ∪i∈IUi then there exist i1, . . . , in ∈ I
s.t. X =

∑n
j=1 Uij . A topological space X is called compact if it is Hausdorff and quasi-compact.

As is standard we will write iff for ‘if and only if’.

2. Cell decompositions and CW-complexes

Definition 2.1. An n-cell is a space homeomorphic to the open n-disk int(Dn). A cell is a space
which is an n-cell for some n ≥ 0.

Note that int(Dm) and int(Dn) are homeomorphic if and only if m = n. This e.g. follows by
noting that int(Dn) is homeomorphic to Rn (via the map x 7→ tan(π|x|/2)x), and by the fact that
Rm is homeomorphic to Rn iff m = n, cf. [Ha, Theorem 2.26 p. 126]. Thus we can talk about the
dimension of a cell. An n-cell will be said to have dimension n.

Definition 2.2. A cell-decomposition of a space X is a family E = {eα | α ∈ I } of subspaces of
X such that each eα is a cell and

X = qα∈Ieα

(disjoint union of sets). The n-skeleton of X is the subspace

Xn = qα∈I:dim(eα)≤neα.

Note that if E is a cell-decomposition of a space X, then the cells of E can have many different
dimensions. E.g. one cell-decomposition of S1 is given by E = {ea, eb}, where ea is an arbitrary
point p ∈ S1 and eb = S1 \ {p}. Here ea is a 0-cell and eb is a 1-cell. There are no restrictions
on the number of cells in a cell-decomposition. Thus we can have uncountable many cells in such
a decomposition. E.g. any space X has a cell-decomposition where each point of X is a 0-cell. A
finite cell-decomposition is a cell decomposition consisting of finitely many cells.

Definition 2.3. A pair (X, E) consisting of a Hausdorff space X and a cell-decomposition E of X
is called a CW-complex if the following 3 axioms are satisfied:
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Axiom 1: (‘Characteristic Maps’) For each n-cell e ∈ E there is a map Φe : Dn → X
restricting to a homeomorphism Φe|int(Dn) : int(Dn) → e and taking Sn−1 into Xn−1.

Axiom 2: (‘Closure Finiteness’) For any cell e ∈ E the closure ē intersects only a finite
number of other cells in E .

Axiom 3: (‘Weak Topology’) A subset A ⊆ X is closed iff A ∩ ē is closed in X for each
e ∈ E .

Here ē of course is the closure of e in X. Note that the Axioms 2 and 3 are only needed in case
E is infinite (i.e. they are automatically satisfied if E is finite). It is not difficult to give examples of
pairs (X, E) with X a Hausdorff space and E an infinite cell-decomposition of X such that Axiom
1 is satisfied and either Axiom 2 or Axiom 3 is satisfied, see e.g. [J, p. 97]. Thus Axiom 2 and 3
are independent of each other. Note that the characteristic map for a 0-cell e ⊆ X is simply the
map mapping 0 to the one-point space e.

Lemma 2.4. Let (X, E) be a Hausdorff space X together with a cell-decomposition E. If (X, E)
satisfies Axiom 1 in Definition 2.3 then we have

ē = Φe(Dn)

for any cell e ∈ E. In particular ē is a compact subspace of X and the ‘cell boundary’ ē \ e =
Φe(Sn−1) lies in Xn−1.

Proof. For any map f : Y → Z between topological spaces Y and Z and any subset B ⊆ Y we
have f(B̄) ⊆ f(B), see e.g. [D, Theorem III.8.3 pp. 79-80] or [A, Theorem 2.9 p. 33]. Thus

ē = Φe(int(Dn)) ⊇ Φe(Dn) ⊇ e.

But Φe(Dn) is compact hence closed in X since X is Hausdorff. Thus Φe(Dn) = ē. By Axiom 1
we have Φe(int(Dn)) = e and Φe(Sn−1) ∩ e = ∅ so Φe(Sn−1) = ē \ e. �

Note, if X is not Hausdorff we still have Φe(Dn) ⊆ ē but we don’t necessarily have equality. We
have no garantee that Φe(Dn) is closed in X.

3. Subcomplexes

Let (X, E) be a CW-complex, E ′ ⊆ E a set of cells in it and

X ′ = ∪e∈E ′e.

Lemma 3.1. The following 3 conditions are equivalent:
(a) The pair (X ′, E ′) is a CW-complex.
(b) The subset X ′ is closed in X.
(c) The closure ē ⊆ X ′ for each e ∈ E ′, where ē is the closure of e in X.

For a proof, see [J, p. 98].

Definition 3.2. Let (X, E) be a CW-complex and let (X ′, E ′) be as above. Then (X ′, E ′) is called
a subcomplex (of (X, E)) if the 3 equivalent conditions (a), (b) and (c) in the above lemma are
satisfied.

We have some immediate consequences:

Corollary 3.3. Let (X, E) be a CW-complex. Then
(1) Let {Ai | i ∈ I} be any family of subcomplexes of (X, E). Then ∪i∈IAi and ∩i∈IAi are

subcomplex of (X, E).
(2) The n-skeleton Xn is a subcomplex of (X, E) for each n ≥ 0.
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(3) Let {ei|i ∈ I} be an arbitrary family of n-cells in E. Then Xn−1∪ (∪i∈Iei) is a subcomplex.

Proof. For (1) note that ∪i∈IAi is a subcomplex by characterization (c) in Lemma 3.1 and
∩i∈IAi is a subcomplex by (b) in that lemma. Both (2) and (3) follow by using characterization
(c) in Lemma 3.1 together with Lemma 2.4. �

Note that (2) is a special case of (3). By the above we have that the n-skeleton Xn of a
CW-complex (X, E) is a closed subset of X.

4. Identification Topology and Quotient Spaces

In the next section we need a general proceedure for constructing new spaces from old spaces
by gluing spaces together via maps. Let us in this section describe the general concepts from point
set topology needed.

4.1. Identification Topology. Let X be a topological space and let Y be an arbitrary set and
let p : X → Y be a surjection. Then we can define a topology in Y by: a subset U ⊆ Y is
open iff p−1(U) is open in X. This topology is the largest topology in Y for which p : X → Y is
continuous. We call it the identification topology in Y determined by p, and p : X → Y is called
an identification map.

If X and Y are two spaces and p : X → Y a surjective map, then p is called an identification
map if the topology in Y is the identification topology determined by p.

Lemma 4.1. Let X be a compact space and Y a Hausdorff space and let p : X → Y be a surjective
map. Then p is an identification map.

Proof. It is enough to prove that C ⊆ Y is closed iff p−1(C) is closed. Since p is continuous we
only have to prove that C is closed in Y if p−1(C) is closed in X. But if p−1(C) is closed in X
then it is compact, since X is compact. Thus C = p(p−1(C)) is compact in the Hausdorff space
Y , hence C is closed in Y . �

Lemma 4.2. Let p : X → Y be an identification map and let Z be a space. Then f : Y → Z is
continuous iff f ◦ p : X → Z is continuous.

Proof left to the reader.

4.2. Quotient spaces. Let X be a set and let ∼ be an equivalence relation on X. Let X/∼
be the set of equivalence classes and let π : X → X/∼ be the canonical projection, i.e. the
function mapping x to the equivalence class containing x. Recall here that the equivalence classes
are mutually disjoint subsets of X and that X is the disjoint union of these equivalence classes.
Oppositely, if we have given a disjoint family {Ai}i∈I of subsets of X covering X, i.e. X = ∪i∈IAi,
then we can define an equivalence relation on X by x ∼ y if and only if ∃i ∈ I s.t. x, y ∈ Ai.
The equivalence classes for that equivalence relation ∼ are nothing but our subsets Ai. Thus an
equivalence relation in X is nothing but a partition of X into subsets.

Now, given a space X and an equivalence relation ∼ we equip X/∼ with the identification
topology determined by the canonical projection π : X → X/∼. This topology is normally called
the quotient topology and X/∼ is called a quotient space of X (the quotient of X by ∼).

If p : X → Y is an identification map, then we can identify Y with a quotient space. Namely,
the subsets p−1(y), y ∈ Y , gives a partition of X. Thus the equivalence relation ∼ in X induced
by this partition is x ∼ x′ iff p(x) = p(x′). We thus have a bijection q : X/∼ → Y given by
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q(π(x)) = p(x), where π : X → X/∼ is the canonical projection. By Lemma 4.2 both q and
q−1 are continuous since p and π are both identification maps and q ◦ π = p and q−1 ◦ p = π
are continuous. Thus q : X/∼ → Y is a homeomorphism so from a topological point of view we
consider Y and X/∼ to be the same space. Thus quotient spaces and identification spaces are one
and the same thing.

There are many standard constructions in algebraic topology using the above ideas. In particular
we mention:

Collapsing a subspace to a point. Let X be a topological space and let A be some non-empty
subspace. Then we let X/A = X/∼, where the equivalence classes w.r.t. ∼ are A and the singletons
{x}, x ∈ X \A.

The Wedge of Spaces. Given two spaces X and Y and chosen points x0 ∈ X and y0 ∈ Y we let

X ∨ Y = (X q Y )/{x0, y0}.
That is, we collapse the subset {x0, y0} to a point. Here X q Y is the topological disjoint union
of X and Y (sometimes called the topological sum of X and Y ), see below. We note that the
construction depends on the points x0 and y0. However, different choices can lead to homeomorphic
results. Thus e.g. S1 ∨ S1 does not depend on the choice of the points x0 and y0.

More generally we can talk about the wedge of a family of spaces {Xi}i∈I , namely if xi ∈ Xi

we let
∨i∈IXi = qi∈IXi/A,

where A = {xi}i∈I , and where qi∈IXi is the topological disjoint union of the spaces Xi.

Here and in the following we use the following construction. Let {Xi}i∈I be a family of topo-
logical spaces. Then the topological disjoint union X = qXi is the following topological space. As
a set it is equal to ∪i∈I{i} ×Xi. We identify {i} ×Xi with Xi. The topology on X is given by:
U is open in X iff U ∩Xi is open in Xi for all i ∈ I. Note that if fi : Xi → Y , i ∈ I is a family
of maps then we get a unique map f = qi∈Ifi : X → Y s.t. f |Xi = fi for each i ∈ I. A function
f : X → Y is continuous iff f |Xi : Xi → Y is continuous for each i ∈ I.

Attaching a space to another via map. Let X and Y be two spaces and let A be a subspace
of X and f : A → Y a map. Then

X qf Y := X q Y/∼,

where X q Y is given the disjoint union topology, see above, and the equivalence classes w.r.t. ∼
are the singletons {p}, p ∈ X \ A and p ∈ Y \ f(A), and the subsets {y} ∪ f−1(y), y ∈ f(A). We
will only need this in situations where A is a closed subset of X.

Lemma 4.3. Let the situation be as above with A a closed subset of X, let π : X q Y → X qf Y
be the canonical projection and let i : Y → X q Y and j : X \ A → X q Y be the inclusion
maps. Then π ◦ i : Y → X qf Y is an embedding with image a closed subset of X qf Y and
π ◦ j : X \A → X qf Y is an embedding with image an open subset of X qf Y .

Exercise 4.4. Prove the above lemma.

5. CW-complexes considered as spaces obtained by attaching cells to each other

We start by a small

Lemma 5.1. Let (X, E) be a CW-complex and let Y be any space and let f : X → Y be a function.
Then the following are equivalent.

(1) f : X → Y is continuous.
(2) The restriction f |ē : ē → Y is continuous for all e ∈ E.
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(3) The restriction f |Xn : Xn → Y is continuous for all n ≥ 0.

Exercise 5.2. Prove the above lemma.

Proposition 5.3. Let (X, E) be a CW-complex. Then Xn is obtained from Xn−1 by attaching of
the n-cells in X.

Proof. Let En be the n-cells in X and let for each e ∈ En, Φe : Dn → X be the characteristic
map of e. Since Φe(Sn−1) ⊆ Xn−1 we can consider ϕe = Φe|Sn−1 : Sn−1 → Xn−1. For each
e ∈ En, let Dn

e = {e} × Dn and identify this with Dn. (Here e is just some index.) We let
Z = qe∈EnDn

e , A = qe∈En∂Dn
e and ϕ = qe∈Enϕe : A → Xn−1. Thus ϕ|∂Dn

e
= ϕe. (Here

∂Dn
e = {e} × Sn−1 ∼= Sn−1.) We let

Y = Z qϕ Xn−1

and let πn : Z qXn−1 → Y be the canonical projection. We have a surjective map

f = (qe∈EnΦe)q j : Z qXn−1 → Xn,

where j : Xn−1 → Xn is the inclusion. The proof is finalized by the following exercise. �

Exercise 5.4. Let the situation be as in the above proof. Prove the following facts:
(1) There is a unique bijection α : Y → Xn such that α ◦ πn = f .
(2) The bijection α is a homeomorphism. (Hint: To prove that α−1 is continuous use Lemma 5.1

and prove that α−1|ē = πn|ē if e ⊆ Xn−1 and α−1|ē ◦Φe = πn|Dn
e

: Dn
e → Y for each e ∈ En.

Prove and use that Φe : Dn
e → ē is an identification map.)

(3) The composition α ◦ πn|Xn−1 : Xn−1 → Xn is the inclusion.

We can now formulate an alterantive definition of CW-complexes.

Proposition/Definition 5.5. A CW-complex is a space together with a filtration of subspaces

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆ X

such that
(1) Xn is obtained by attaching of n-cells to Xn−1. That is, we have maps ϕα : ∂Dn

α → Xn−1,
α ∈ In, n ≥ 0, and homeomorphisms αn : Y n → Xn such that αn ◦ πn|Xn−1 : Xn−1 → Xn

is the inclusion, where
Y n = Zn qϕn Xn−1,

where Zn = qα∈InDn
α and ϕn = qα∈Inϕα : qα∈In∂Dn

α → Xn−1, and where πn : Zn q
Xn−1 → Y n is the canonical projection.

(2) X = ∪n≥0X
n.

(3) X carries the weak topology w.r.t. the family of spaces {Xn}n≥0. That is, a subset A ⊆ X
is closed iff A ∩Xn is closed in Xn for all n ≥ 0.

Thus by (1) we have (inductively) a unique topology on Xn for each n ≥ 0 starting by noting
that X0 necessarily have the discrete topology (since X0 = qα∈I0D

0
α), and by (3) the total space

X then has the weak topology w.r.t. these topological spaces.
Note that we have not included in the definition above that X is Hausdorff. That follows

automatically as the proof will reveal.

Proof. Exercise. See later version. �



6

References

[A] M. A. Armstrong, Basic Topology, Undergraduate Texts in Mathematics, Springer–Verlag (1983).
[D] J. Dugundji, Topology, Allyn and Bacon, Inc. (1966).
[Ha] A. Hatcher, Algebraic Topology, Cambridge University Press (2002).
[J] K. Jänich, Topology, Undergraduate Texts in Mathematics, Springer–Verlag (1984).


