Algebraic K-theory Exercise Set 1

25.02.2011

- 1. Prove that the group completion of a group is its abelienization.
- 2. A monoid is a semigroup equipped with a neutral element. An abelian monoid (A, +, 0) is free on a subset $X \subseteq A$ if for every $a \in A$, there is exactly one function $f_a : X \to \mathbb{N}$ such that
 - $\#\{x \mid f_a(x) = 0\} < \infty$, and
 - $a = \sum_{x \in X} f_a(x) \cdot x.$

Show that if (A, +, 0) is free on X, then the group completion map $\gamma : A \to \widehat{A}$ is injective, and \widehat{A} is a free abelian group, with basis $\{\gamma(x) \mid x \in X\}$.

3. Let (S, *, e) be an abelian monoid, and define an equivalence relation \sim on $S \times S$ by

 $(s,t) \sim (s',t') \iff \exists u \in S \text{ s.t. } s * t' * u = t * s' * u.$

Let s - t denote the equivalence class of (s, t) in $S \times S / \sim$.

(a) Show that the binary operation

$$(s-t) + (s'-t') := (s*s') - (t*t')$$

on $S \times S / \sim$ is well defined and endows $S \times S / \sim$ with the structure of an abelian group.

- (b) Show that S × S/ ∼ is isomorphic to the usual group completion of (S, *, e).
- 4. (A quick survey of projective modules) Let R be a ring, and let P be an $R\operatorname{-module}$
 - (a) Show that the following conditions are equivalent.
 - i. P is a direct summand of a free R-module.

ii. For every diagram

$$\begin{array}{c} P \\ \downarrow f \\ M \xrightarrow{p} N \xrightarrow{p} 0 \end{array}$$

of homomorphisms of *R*-modules in which the bottom row is exact (i.e., p is surjective), there is a homomorphism of *R*-modules $\widehat{f}: P \to M$ such that $p \circ \widehat{f} = f$.

iii. Every exact sequence of homomorphisms of R-modules

$$0 \to M \to N \to P \to 0$$

splits.

If any of the conditions above holds, we say that P is a $projective R\mbox{-module}.$

- (b) Prove that if R is an integral domain, then every projective R-module is torsion-free.
- (c) Prove that if R is a principal ideal domain, then every finitely generated, torsion-free R-module is projective.
- (d) Prove \mathbb{Q} is not a projective \mathbb{Z} -module.