Algebraic K-theory Exercise Set 2

04.03.2011

1. Let R be a ring such that $0 \neq R$. Let $Mat_{\infty}(R)$ denote the ring of functions

 $f:\mathbb{N}\times\mathbb{N}\to R$

(which can be visualized as " $\mathbb{N} \times \mathbb{N}$ -matrices") such that for every $j \in \mathbb{N}$

$$\#\{i \mid f(i,j) \neq 0\} < \infty.$$

Show that $K_0(\operatorname{Mat}_{\infty}(R)) = 0.$

2. Let R be a ring whose center contains a field \mathbb{F} . If dim_F $R < \infty$, prove that

$$\dim_{\mathbb{F}}: \mathcal{M}(R) \to (\mathbb{Z}, +, 0)$$

is a generalized rank.

Remark 0.1. Note that in this case the generalized rank does not send the base ring R to 1! An example of such a ring R is any polynomial ring with coefficients in a field \mathbb{F} .

- 3. Let p be a prime number, and let C be the full subcategory of $\mathbb{Z}Mod$, the objects of which are all finite, abelian p-groups. Show that $K_0(\mathbb{C}) \cong (\mathbb{Z}, +, 0)$.
- 4. Let R be a commutative PID.
 - (a) Prove that if M is a free R-module of rank n, then every submodule of M is also free, of rank at most n.
 - (b) Prove that $K_0(R) \cong (\mathbb{Z}, +, 0)$.
- 5. Let D be a division ring. Prove that $K_0(D) \cong (\mathbb{Z}, +, 0)$.