Algebraic K-theory Exercise Set 3

11.03.2011

1. Prove the Horseshoe Lemma: Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of R-modules. If

$$
0 \rightarrow P_{n}^{\prime} \rightarrow \cdots \rightarrow P_{0}^{\prime} \rightarrow L \rightarrow 0
$$

and

$$
0 \rightarrow P_{n}^{\prime \prime} \rightarrow \cdots \rightarrow P_{0}^{\prime \prime} \rightarrow N \rightarrow 0
$$

are projective resolutions, then there is a projective resolution

$$
0 \rightarrow P_{n}^{\prime} \oplus P_{n}^{\prime \prime} \rightarrow \cdots \rightarrow P_{0}^{\prime} \oplus P_{0}^{\prime \prime} \rightarrow M \rightarrow 0
$$

2. Let R be a ring, and let $0 \rightarrow P_{n} \rightarrow \cdots \rightarrow P_{0} \rightarrow 0$ be an exact sequence in $\mathcal{P}(R)$. Prove that

$$
\sum_{i=0}^{n}(-1)^{i} r\left(P_{i}\right)=0
$$

for any generalized rank $r: \operatorname{Ob} \mathcal{P}(R) \rightarrow(A,+, 0)$.
3. Let R be a commutative PID.
(a) Prove that if

$$
0 \rightarrow R^{\oplus n} \rightarrow R^{\oplus m} \rightarrow M \rightarrow 0 \text { and } 0 \rightarrow R^{\oplus n^{\prime}} \rightarrow R^{\oplus m^{\prime}} \rightarrow M \rightarrow 0
$$

are both exact sequences of R-modules, then $m-n=m^{\prime}-n^{\prime}$. (Hint: Use Schanuel's Lemma and Exercise 4(a) of Exercise Set 2.)
(b) Conclude that $G_{0}(R) \cong(\mathbb{Z},+, 0)$.

