Algebraic K-theory
 Exercise Set 4

25.03.2011

1. Let \mathbb{F} be a field, and let R be the ring of 2×2-matrices with coefficients in \mathbb{F}. Let

$$
P=\left\{\left.\left(\begin{array}{ll}
\alpha & 0 \\
\beta & 0
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{F}\right\}
$$

Prove that P is a projective R-module that is not stably free.
2. Let R be a ring such that $0 \neq R$. Let $\operatorname{Mat}_{\infty}(R)$ denote the ring of " $\mathbb{N} \times \mathbb{N}$ matrices" of Exercise 1 in Exercise Set 2. Let

$$
P=\{g: \mathbb{N} \rightarrow R \mid \#\{i \mid g(i) \neq 0\}<\infty\}
$$

i.e., the elements of P can be seen as infinite column vectors with only finitely many nonzero coefficients. Show that $\operatorname{Mat}_{\infty}(R)$ acts on P on the left by "matrix multiplication" and that P is a a projective, stably free, but not free, R-module with respect to this action.
3. Let R be a ring, and let $P \in \mathcal{P}(R)$. Prove that P is stably free if and only if there is an exact sequence of R-modules

$$
0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{0} \rightarrow P \rightarrow 0
$$

in which each F_{i} is a finitely generated, free R-module.

