Algebraic K-theory Exercise Set 5

01.04.2011

- 1. Let R be a ring, and let $\mathcal{I}(R)$ denote the set of all two-sided ideals of R. Show that $(\mathcal{I}(R), +, 0, *)$ is a semiring, where $I + J = \{x+y \mid x \in I, y \in J\}$ and $I * J = \{xy \mid x \in I, y \in J\}$ for all $I, J \in \mathcal{I}(R)$, and calculate its group completion.
- 2. Let X be any set, and let $\mathfrak{P}(X)$ denote the power set of X. Show that both $(\mathfrak{P}(X), \cap, X, \cup)$ and $(\mathfrak{P}(X), \cup, \emptyset, \cap)$ are commutative semirings, and calculate their group completions.
- 3. Prove the following important, elementary properties of the tensor product construction. Let R, S, T and U be any rings.
 - (a) If $M \in {}_{R}\mathbf{Mod}_{S}$ and $N \in {}_{S}\mathbf{Mod}_{T}$, then $M \otimes_{S} N \in {}_{R}\mathbf{Mod}_{T}$.
 - (b) If $M \in {}_{R}\mathbf{Mod}_{S}$, then $R \otimes_{R} M \cong M$ as (R, S)-bimodules.
 - (c) Let \mathcal{J} be any set. If $M_j \in {}_R\mathbf{Mod}_S$ for all $j \in \mathcal{J}$, and $N \in {}_S\mathbf{Mod}_T$, then

$$\left(\bigoplus_{j\in\mathfrak{J}}M_j\right)\otimes_S N\cong\bigoplus_{j\in J}(M_j\otimes_S N)$$

as (R, T)-bimodules

(d) If $L \in {}_{R}\mathbf{Mod}_{S}$, $M \in {}_{S}\mathbf{Mod}_{T}$ and $N \in {}_{T}\mathbf{Mod}_{U}$, then

$$(L \otimes_S M) \otimes_T N \cong L \otimes_S (M \otimes_T N)$$

as (R, U)-bimodules.