Algebraic K-theory
 Exercise Set 5

01.04.2011

1. Let R be a ring, and let $\mathcal{J}(R)$ denote the set of all two-sided ideals of R. Show that $(\mathcal{J}(R),+, 0, *)$ is a semiring, where $I+J=\{x+y \mid x \in I, y \in J\}$ and $I * J=\{x y \mid x \in I, y \in J\}$ for all $I, J \in \mathcal{J}(R)$, and calculate its group completion.
2. Let X be any set, and let $\mathfrak{P}(X)$ denote the power set of X. Show that both $(\mathfrak{P}(X), \cap, X, \cup)$ and $(\mathfrak{P}(X), \cup, \emptyset, \cap)$ are commutative semirings, and calculate their group completions.
3. Prove the following important, elementary properties of the tensor product construction. Let R, S, T and U be any rings.
(a) If $M \in{ }_{R} \operatorname{Mod}_{S}$ and $N \in{ }_{S} \operatorname{Mod}_{T}$, then $M \otimes_{S} N \in{ }_{R} \operatorname{Mod}_{T}$.
(b) If $M \in{ }_{R} \operatorname{Mod}_{S}$, then $R \otimes_{R} M \cong M$ as (R, S)-bimodules.
(c) Let \mathcal{J} be any set. If $M_{j} \in{ }_{R} \operatorname{Mod}_{S}$ for all $j \in \mathcal{J}$, and $N \in{ }_{S} \operatorname{Mod}_{T}$, then

$$
\left(\bigoplus_{j \in \mathcal{J}} M_{j}\right) \otimes_{S} N \cong \bigoplus_{j \in J}\left(M_{j} \otimes_{S} N\right)
$$

as (R, T)-bimodules
(d) If $L \in{ }_{R} \operatorname{Mod}_{S}, M \in{ }_{S} \operatorname{Mod}_{T}$ and $N \in{ }_{T} \operatorname{Mod}_{U}$, then

$$
\left(L \otimes_{S} M\right) \otimes_{T} N \cong L \otimes_{S}\left(M \otimes_{T} N\right)
$$

as (R, U)-bimodules.

