Algebraic K-theory Exercise Set 8

06.05.2011

1. Describe the K_{0}-localization sequence explictly when $S=\{1, e\}$, where e is a central idempotent of R.

2 . Let \mathbb{k} be a field, and let V be an infinite-dimensional \mathbb{k}-vector space. Let $R=\operatorname{End}_{\mathfrak{k}}(V)$. Prove that $K_{1} R$ is the trivial group.
Hint: An Eilenberg swindle-type argument will do the trick. Observe first that $V \cong \bigoplus_{n \in \mathbb{N}} V$. It follows that any $A \in G L(R)$ gives rise to another element of $G L(R)$

$$
\infty \cdot A=\left(\begin{array}{cccccc}
A & 0 & 0 & \cdots & & \\
0 & A & 0 & \cdots & & \\
0 & 0 & A & \cdots & \\
\vdots & \vdots & \vdots & . & & \\
& & & & .
\end{array}\right)
$$

Show that A and $A \oplus \infty \cdot A$ are conjugate.
3. Let R be a Euclidean ring. Prove that $S K_{1}(R)=0$ and thus that $K_{1}(R) \cong$ R^{*}.
Hint: Use the norm function on R to construct an inductive argument that any invertible matrix with coefficients in R can be row-reduced (essentially via the Gauss-Jordan algorithm) to an upper triangular matrix and then to a diagonal matrix and finally to a diagonal matrix with only one diagonal coefficient different from 1 .
4. Apply exercise 3 to computing the following values of K_{1}.
(a) $K_{1}(\mathbb{Z}) \cong\{1,-1\}$.
(b) $K_{1}(\mathbb{Z}[i]) \cong\{1, i,-1,-i\}$.
(c) $K_{1}\left(\mathbb{Z}\left[\frac{-1+i \sqrt{3}}{2}\right]\right) \cong \mu_{6}$, the multiplicative group of the $6^{\text {th }}$ roots of unity.
(d) $K_{1}(\mathbb{k}[t]) \cong \mathbb{k}^{*}$, if \mathbb{k} is a field.

