Algebraic K-theory Exercise Set 8

06.05.2011

- 1. Describe the K_0 -localization sequence explicitly when $S = \{1, e\}$, where e is a central idempotent of R.
- 2. Let k be a field, and let V be an infinite-dimensional k-vector space. Let $R = \operatorname{End}_{\Bbbk}(V)$. Prove that K_1R is the trivial group.

Hint: An Eilenberg swindle-type argument will do the trick. Observe first that $V \cong \bigoplus_{n \in \mathbb{N}} V$. It follows that any $A \in GL(R)$ gives rise to another element of GL(R)

$$\infty \cdot A = \begin{pmatrix} A & 0 & 0 & \cdots & \\ 0 & A & 0 & \cdots & \\ 0 & 0 & A & \cdots & \\ \vdots & \vdots & \vdots & \ddots & \\ & & & & \ddots & \\ & & & & & \ddots \end{pmatrix}$$

Show that A and $A \oplus \infty \cdot A$ are conjugate.

3. Let R be a Euclidean ring. Prove that $SK_1(R) = 0$ and thus that $K_1(R) \cong R^*$.

Hint: Use the norm function on R to construct an inductive argument that any invertible matrix with coefficients in R can be row-reduced (essentially via the Gauss-Jordan algorithm) to an upper triangular matrix and then to a diagonal matrix and finally to a diagonal matrix with only one diagonal coefficient different from 1.

- 4. Apply exercise 3 to computing the following values of K_1 .
 - (a) $K_1(\mathbb{Z}) \cong \{1, -1\}.$
 - (b) $K_1(\mathbb{Z}[i]) \cong \{1, i, -1, -i\}.$
 - (c) $K_1(\mathbb{Z}[\frac{-1+i\sqrt{3}}{2}]) \cong \mu_6$, the multiplicative group of the 6th roots of unity.
 - (d) $K_1(\Bbbk[t]) \cong \Bbbk^*$, if \Bbbk is a field.