Algebraic K-theory Exercise Set 9

20.05.2011

1. Prove that $K_1(\mathcal{F}(-))$ and $K_1(\mathcal{P}(-))$ are natural, i.e., that they extend to functors

 $K_1(\mathcal{F}(-)), K_1(\mathcal{P}(-)) : \mathbf{Ring} \to \mathbf{Ab}.$

Show that the isomorphisms $K_1 R \cong K_1(\mathfrak{F}(R)) \cong K_1(\mathfrak{P}(R))$ seen in class are natural.

2. Let C be a modest subcategory of $_R$ Mod, and let $M \in C$, $\alpha \in Aut(M)$. If

$$M = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_r$$

is a **C**-filtration of M such that $\alpha(M_i) = M_i$ for all *i*, prove that

$$[M, \alpha] = \sum_{i=0}^{n-1} [M_i / M_{i+1}, \alpha_i]$$

in $K_1(\mathbf{C})$, where $\alpha_i \in \operatorname{Aut}(M_i/M_{i+1})$ is induced by α .

3. Let C be a modest subcategory of $_R$ Mod such that if $f: M \to N$ is a morphism in C, then ker f is an object in C. Let

$$0 \to (M_n, \alpha_n) \to \dots \to (M_0, \alpha_0) \to 0$$

be an exact sequence in Aut(C). Prove that

$$\sum_{i=0}^{n} (-1)^{i} [M_{i}, \alpha_{i}] = 0.$$

4. (A very brief introduction to the Whitehead group, which plays a crucial role in geometric topology.) Let G be a group, and let w denote the composite homomorphism

$$G \times \{1, -1\} \xrightarrow{j} GL_1(\mathbb{Z}[G]) \xrightarrow{s_1} K_1(\mathbb{Z}[G]),$$

where $j(g, \pm 1) = (\pm g)$. The Whitehead group of G is

$$Wh(G) := \operatorname{coker} w = K_1(\mathbb{Z}[G]) / \langle s_1(\pm g) \mid g \in G \rangle.$$

- (a) Prove that $Wh(\{e\}) \cong \{e\}$.
- (b) Let C_2 denote the cyclic group of order 2. Prove that

$$Wh(C_2) \cong SK_1(D(\mathbb{Z},(2)))$$

- (c) (A bit tricky; see [Rosenberg, Thm. 2.4.3].) Prove that $SK_1(D(\mathbb{Z}, (2)))$ is in fact the trivial group, whence $Wh(C_2)$ is trivial.
- (d) Let C_5 denote the cyclic group of order 5. Show that there is an element of infinite order in $Wh(C_5)$. **Hint:** Let t denote the generator of C_5 . Show that $a = 1 - t - t^{-1}$ is a unit in $\mathbb{Z}[G]$. Next show that the composite of the homomorphism $\alpha : \mathbb{Z}[G] \to \mathbb{C}$ specified by $\alpha(t) = e^{i2\pi/5}$ with the norm map $\mathbb{C} \to \mathbb{R}_{\geq 0}$ induces a homomorphism $Wh(C_5) \to (\mathbb{R}_{>0}, \cdot)$.
- (e) Let G_{ab} denote the abelianization of G. Prove that there are group homomorphisms

$$G_{ab} \times \{1, -1\} \xrightarrow{j} K_1(\mathbb{Z}[G]) \xrightarrow{r} G_{ab} \times \{1, -1\}$$

such that rj = Id. Conclude that

$$K_1(\mathbb{Z}[G]) \cong G_{ab} \times \{1, -1\} \times Wh(G).$$

Remark 0.1. In fact,

$$Wh(C_n) = \begin{cases} \{e\} & : n = 2, 3, 4, 6 \\ \mathbb{Z} & : n = 5. \end{cases}$$

More generally, if G is finite abelian, then the determinant induces an isomorphism

$$\det: K_1(\mathbb{Z}[G]) \to \mathbb{Z}[G]^*$$

and so

$$Wh(G) \cong \mathbb{Z}[G]^* / < \pm g \mid g \in G > A$$

On the other hand, Bass, Heller and Swan proved that if G is *free* abelian, then Wh(G) is always trivial.