Homotopie et Homologie Exercise Set 1

22.09.2011

1. Show that if $F:\mathscr{C}\to\mathscr{D}$ and $G:\mathscr{D}\to\mathscr{E}$ are functors, then the pair of functions

 $G_0 \circ F_0 : \operatorname{Ob} \mathscr{C} \to \operatorname{Ob} \mathscr{E} \quad \text{ and } \quad G_1 \circ F_1 : \operatorname{Mor} \mathscr{C} \to \operatorname{Mor} \mathscr{E}$

defines a functor $G \circ F : \mathscr{C} \to \mathscr{E}$.

2. Let \mathscr{C} and \mathscr{D} be categories. Show that if we set

$$\operatorname{Ob}(\mathscr{C} \times \mathscr{D}) = \operatorname{Ob} \mathscr{C} \times \operatorname{Ob} \mathscr{D}$$

and for all $C, C' \in \operatorname{Ob} \mathscr{C}, D, D' \in \operatorname{Ob} \mathscr{D}$

$$(\mathscr{C} \times \mathscr{D})((C, D), (C', D')) = \mathscr{C}(C, C') \times \mathscr{D}(D, D'),$$

then there is a composition law making $\mathscr{C} \times \mathscr{D}$ into a category such that projection onto the first (respectively, second) component induces functors $P_1 : \mathscr{C} \times \mathscr{D} \to \mathscr{C}$ and $P_2 : \mathscr{C} \times \mathscr{D} \to \mathscr{D}$. Show moreover that for every pair of functors $F : \mathscr{E} \to \mathscr{C}$ and $G : \mathscr{E} \to \mathscr{D}$, there is a unique functor $(F,G) : \mathscr{E} \to \mathscr{C} \times \mathscr{D}$ such that $P_1 \circ (F,G) = F$ and $P_2 \circ (F,G) = G$.

- 3. A morphism $f : A \to B$ in a category \mathscr{C} is an *isomorphism* if there exists another morphism $g : B \to A$ in \mathscr{C} such that $g \circ f = \mathrm{Id}_A$ and $f \circ g = \mathrm{Id}_B$.
 - (a) What are the isomorphisms in **Set**, **Top**, and **Gr**? What about in the category **G** arising from a group *G*?
 - (b) Let $F : \mathscr{C} \to \mathscr{D}$ be a functor. Show that if $f : A \to B$ is an isomorphism in \mathscr{C} , then $F_1(f)$ is an isomorphism in \mathscr{D} . Does the converse hold?
- 4. Let (X, \mathscr{T}) be a topological space. Explain how to form a category $\Pi_1(X, \mathscr{T})$ with $\operatorname{Ob} \Pi_1(X, \mathscr{T}) = X$ and such that $\Pi_1(X, \mathscr{T})(x, x')$ is the set of all homotopy classes of paths from x to x'. Show that every morphism in $\Pi_1(X, \mathscr{T})$ is an isomorphism. (This category is called the *fundamental groupoid* of the space (X, \mathscr{T}) .)