Homotopie et Homologie Exercise Set 10

01.12 .2011

Throughout these exercises, space means topological space, map means continuous map, and I denotes $[0,1]$.

1. Prove that a composite of fibrations is a fibration.
2. Prove that a pullback of a fibration along any map is a fibration.
3. Use the characterization of Hurewicz fibrations to prove that the map

$$
\left(e v_{0}, e v_{1}\right): \operatorname{Map}(I, X) \rightarrow X \times X: \lambda \mapsto(\lambda(0), \lambda(1))
$$

is a Hurewicz fibration.
4. Prove that "fibrations are everywhere", i.e., for every continuous map f : $X \rightarrow Y$, there exist a homotopy equivalence $j: X \rightarrow E$ and a (Hurewicz) fibration $p: E \rightarrow Y$ such that $f=p \circ j$.
Hint 1. Let E be the pullback of $e v_{0}: \operatorname{Map}(I, Y) \rightarrow Y$ and of $f: X \rightarrow Y$.
5. Let $p: E \rightarrow B$ be a Hurewicz fibration. Prove that if B is path-connected, then for all $b_{0}, b_{1} \in B$,

$$
p^{-1}\left(b_{0}\right) \sim p^{-1}\left(b_{1}\right)
$$

Hint 2. Use the path lifting map $\Gamma: E \times{ }_{B} \operatorname{Map}(I, B) \rightarrow \operatorname{Map}(I, E)$ associated to p.
6. Let $p: E \rightarrow B$ be a Hurewicz fibration, and let $b_{0} \in B$. Let $F=p^{-1}\left(b_{0}\right)$.
(a) Prove that if $B \simeq\left\{b_{0}\right\}$, then there is a homotopy equivalence φ : $E \rightarrow B \times F$ such that

commutes.

Hint 3. Use the path lifting map $\Gamma: E \times{ }_{B} \operatorname{Map}(I, B) \rightarrow \operatorname{Map}(I, E)$ associated to p and the function $\alpha: \operatorname{Map}(B \times I, B) \rightarrow \operatorname{Map}(B, \operatorname{Map}(I, B))$ from the very first lecture.
Remark 4. For the remainder of the exercise, we no longer assume that B is contractible.
(b) Prove that the homotopy fiber of p (cf. Definition 2, Exercise set 7) is homotopy equivalent to F.
(c) Prove that there is an exact sequence
$\cdots \rightarrow \pi_{n} F \rightarrow \pi_{n} E \rightarrow \pi_{n} B \rightarrow \pi_{n-1} F \rightarrow \cdots \rightarrow \pi_{1} B \rightarrow \pi_{0} F \rightarrow \pi_{0} E \rightarrow \pi_{0} B$
(where homotopy groups of B are calculated with respect to b_{0}, while those of E and F are calculated with respect to some $e_{0} \in F$) and describe the homomorphisms in the sequence (cf. Exercise 2, Exercise set 8). This is the long exact sequence in homotopy of the fibration p.

Remark 5. In the textbook, the authors prove the existence of such long exact sequences for all Serre fibrations as well (Corollary 4.3.34).

