Homotopie et Homologie Exercise Set 12

15.12.2011

Throughout these exercises, *space* means *topological space* and *map* means *continuous map*.

1. Complex projective space of dimension n is

$$\mathbb{C}P^n = \mathbb{C}^{n+1} \smallsetminus \{0\} / \sim$$

where $z \sim z'$ if and only if there exists $\lambda \in \mathbb{C}$ such that $z = \lambda z'$. Prove that $SP^n(S^2) \cong \mathbb{C}P^n$.

- 2. Let (X, x_0) be a pointed CW-complex.
 - (a) Show that concatenation of sequences

 $X^m \times X^n \to X^{m+n} : ((x_1, ..., x_m), (x'_1, ..., x'_n)) \mapsto (x_1, ..., x_m, x'_1, ..., x'_n)$

induces a commutative binary operation

$$+: SP(X) \times SP(X) \to SP(X)$$

which is continuous if, for example, X has countably many cells.

(b) Let (W, w_0) be a compact, pointed space. Show that + induces a commutative binary operation on $[W, SP(X)]_*$, for any pointed CW-complex (X, x_0) .

Definition 1. Let G be an abelian group, and let $n \ge 2$. An *Eilenberg-MacLane space of type* (G, n) is a pointed space (X, x_0) such that $\pi_n(X, x_0) \cong G$ and $\pi_k(X, x_0) = 0$ if $k \ne n$.

Conventions 2. An Eilenberg-MacLane space of type (G, n) is usually denoted K(G, n).

3. Assuming that the natural map $S^1 \to SP(S^1)$ is a weak equivalence, show that $SP(S^n)$ is an Eilenberg-MacLane space of type (\mathbb{Z}, n) for all $n \ge 1$.

- 4. Let $m \in \mathbb{N}$, and define $\lambda_m : S^1 \to S^1$ by $\lambda_m(e^{i\theta}) = e^{im\theta}$.
 - (a) Prove that $\pi_1 \lambda_m : \pi_1 S^1 \to \pi_1 S^1$ is given by multiplication by m.
 - (b) Prove that $SP(C_{\lambda_m})$ is an Eilenberg-MacLane space of type $(\mathbb{Z}/m, 1)$. Hint 3. Use the quasi-fibration obtained by applying SP to the sequence $S^1 \xrightarrow{\lambda_m} S^1 \to C_{\lambda_m}$.
 - (c) Let n > 1. Prove that $SP(\Sigma^{n-1}C_{\lambda_m})$ is an Eilenberg-MacLane space of type $(\mathbb{Z}/m, n)$.
 - (d) Let G be any finitely generated abelian group, and let $n \ge 1$. Explain how to construct an Eilenberg-MacLane space of type K(G, n).
- 5. (Bonus, for those who like categories...) In this exercise we show that the infinite symmetric product construction is a *monad* and that abelian topological groups are *Eilenberg-Moore algebras* for this monad.

Let $\iota_n^X : SP^n(X) \to SP^{n+1}(X)$ denote the canonical inclusion, and let $\eta^X : X \to SP(X)$ denote the inclusion of X as $SP^1(X)$.

(a) For any CW-complex X and for all $n, m \ge 0$, define maps

$$\mu^X_{n,m}:SP^n(SP^m(X))\to SP^{n+m}(X)$$

such that

and

commute, where $f: X \to Y$ is any cellular map of CW-complexes.

(b) From the collection $\{\mu_{n,m}^X \mid m, n \ge 0\}$, construct a map

$$\mu^X: SP(SP(X)) \to SP(X)$$

such that

$$SP(SP(X)) \xrightarrow{\mu^{X}} SP(X)$$

$$SP(SP f) \downarrow \qquad \qquad \downarrow SP f$$

$$SP(SP(Y)) \xrightarrow{\mu^{Y}} SP(Y)$$

commutes, for any cellular map $f: X \to Y$.

(c) Show that

and

commute for all CW-complexes X.

(d) Let A be a topological abelian group with the structure of a CW-complex such that the multiplication map is cellular, e.g., S^1 with its usual CW-structure or any abelian group with the discrete topology. Show that there is a map $m: SP(A) \to A$ such that

$$\begin{array}{c|c} SP(SP(A)) \xrightarrow{\mu^{A}} SP(A) \\ \hline SP(m) & & & \\ SP(A) \xrightarrow{m} A \end{array}$$

and

$$A \xrightarrow{\eta^{A}} SP(A)$$
$$\downarrow^{m}_{Id_{A}} \qquad \downarrow^{m}_{A}$$

commute.