Homotopie et Homologie Exercise Set 5

20.10.2011

- 1. Let (X, x_0, μ) be an *H*-space. Show that if $f : (X, x_0) \to (X', x'_0)$ is a based homotopy equivalence, then X' admits an *H*-space structure with respect to which f is an *H*-morphism. Show that, moreover, if X is actually an *H*-group, then so is X'. In other words, "to be an *H*-space (respectively, *H*-group)" is a homotopy invariant notion.
- 2. Let (X, x_0, μ) be an *H*-space, and let (Y, y_0) be any based space. Show that Map $((Y, y_0), (X, x_0))$ admits an *H*-space structure such that for every based, continuous map $f : (Y, y_0) \to (Z, z_0)$, the induced map

$$f^* : \operatorname{Map}((Z, z_0), (X, x_0)) \to \operatorname{Map}((Y, y_0), (X, x_0))$$

is an H-morphism.

- 3. Let (X, x_0) be any based space. Check that the multiplication and inverse maps on $\Omega(X, x_0)$ defined in class do indeed satisfy the axioms of an *H*-group. Show furthermore that $\Omega^2(X, x_0)$ is a homotopy commutative *H*-group.
- 4. Prove that any *H*-morphism of *H*-groups preserves homotopy inversion up to homotopy, i.e., if (X, x_0, μ, σ) and $(X', x'_0, \mu', \sigma')$ are *H*-groups and $f: (X, x_0, \mu) \to (X', x'_0, \mu')$ is an *H*-morphism, then $f\sigma \simeq_* \sigma' f$.
- 5. Let (X, x_0, μ) and (X', x'_0, μ') be *H*-spaces. Prove that the cartesian product $X \times X'$ admits an *H*-multiplication μ''
 - (a) with respect to which the projection maps from $X \times X' \to X$ and $X \times X' \to X'$ are *H*-morphisms, and
 - (b) such that the unique continuous map $(f, f') : Y \to X \times X'$ induced by a pair of *H*-maps $f : (Y, y_0, \nu) \to (X, x_0, \mu)$ and $f' : (Y, y_0, \nu) \to (X', x'_0, \mu')$ is also an *H*-map.