Homotopie et Homologie Exercise Set 7

10.11.2011

Throughout these exercises, space means topological space, map means continuous map, and I denotes $[0,1]$.
The goal of this series of exercises is to develop and study the dual Barrat-Puppe sequence. We begin by defining the constructions that are analogous to the cone and mapping cone constructions.

Definition 1. The based path space on a pointed space $\left(Y, y_{0}\right)$, denoted $P Y$, is the pullback of

$$
\left\{y_{0}\right\} \hookrightarrow Y \stackrel{e v_{0}}{\leftrightarrows} \operatorname{Map}(I, Y),
$$

where $e v_{0}(\lambda)=\lambda(0)$, i.e., $P Y=\left\{\lambda \in \operatorname{Map}(I, Y) \mid \lambda(0)=y_{0}\right\}$. Let $e: P Y \rightarrow Y$ denote the map given by $e(\lambda)=\lambda(1)$.

Definition 2. The homotopy fiber of a map $f: X \rightarrow Y$, denoted P_{f}, is the pullback of

$$
X \xrightarrow{f} Y \stackrel{e}{\leftarrow} P Y,
$$

i.e., $P_{f}=\{(x, \lambda) \in X \times P Y \mid \lambda(1)=x\}$, which is a subspace of $X \times P Y$. Let $q_{f}: P_{f} \rightarrow X:(x, \lambda) \rightarrow x$.

1. Prove that a pointed map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ is nullhomotopic if and only if there is a pointed map

$$
\widehat{f}:\left(X, x_{0}\right) \rightarrow\left(P Y, c_{y_{0}}\right)
$$

such that

commutes.
2. Let $\left(W, w_{0}\right) \xrightarrow{g}\left(X, x_{0}\right) \xrightarrow{f}\left(Y, y_{0}\right)$ be pointed maps. Prove that $f \circ g$ is nullhomotopic if and only if there exists a pointed map

$$
\widehat{g}:\left(W, w_{0}\right) \rightarrow\left(P_{f},\left(x_{0}, c_{y_{0}}\right)\right)
$$

such that

commutes.
3. Identify the homotopy fibers of the inclusion of the basepoint $\left\{y_{0}\right\}$ into Y, of $e: P Y \rightarrow Y$ and of $q_{f}: P_{f} \rightarrow X$, for any pointed map $f:\left(X, x_{0}\right) \rightarrow$ $\left(Y, y_{0}\right)$. Show that $\Omega P_{f} \simeq_{*} P_{\Omega f}$ as well.
4. Prove that e satisfies the homotopy lifting property, i.e., for every commuting diagram

where $j_{0}(x)=(x, 0)$, there is a map $\widehat{F}: X \times I \rightarrow P Y$ such that $e \circ \widehat{F}=F$ and $\widehat{F} \circ j_{0}=f$.
5. Prove that for any pointed map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ (respectively, H morphism $\left.f:\left(X, x_{0}, \mu\right) \rightarrow\left(Y, y_{0}, \nu\right)\right)$, the sequence $P_{f} \xrightarrow{q_{f}} X \xrightarrow{f} Y$ is h-exact, i.e., for any pointed space (W, w_{0}), the sequence of set maps (respectively, of homomorphisms)

$$
\left[W, P_{f}\right]_{*} \xrightarrow{\left(q_{f}\right)_{*}}[W, X]_{*} \xrightarrow{f_{*}}[W, Y]_{*}
$$

is exact.
6. Given a pointed map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$, explain how to obtain a sequence of pointed maps

$$
\cdots \rightarrow \Omega^{2} X \rightarrow \Omega^{2} Y \rightarrow P_{\Omega f} \rightarrow \Omega X \rightarrow \Omega Y \rightarrow P_{f} \rightarrow X \rightarrow Y
$$

(basepoints suppressed) by iterating the homotopy fiber construction: the dual Barratt-Puppe sequence. Conclude, using exercise 5, that for any pointed space $\left(W, w_{0}\right)$, the sequence
$\cdots \rightarrow\left[W, P_{\Omega f}\right]_{*} \rightarrow[W, \Omega X] \rightarrow[W, \Omega Y]_{*} \rightarrow\left[W, P_{f}\right]_{*} \rightarrow[W, X]_{*} \rightarrow[W, Y]_{*}$
is exact.

