Homotopie et Homologie Exercise Set 7

10.11.2011

Throughout these exercises, space means topological space, map means continuous map, and I denotes [0, 1].

The goal of this series of exercises is to develop and study the dual Barrat-Puppe sequence. We begin by defining the constructions that are analogous to the cone and mapping cone constructions.

Definition 1. The based path space on a pointed space (Y, y_0) , denoted PY, is the *pullback* of

$$\{y_0\} \hookrightarrow Y \xleftarrow{ev_0} \operatorname{Map}(I,Y)$$

where $ev_0(\lambda) = \lambda(0)$, i.e., $PY = \{\lambda \in \operatorname{Map}(I, Y) \mid \lambda(0) = y_0\}$. Let $e: PY \to Y$ denote the map given by $e(\lambda) = \lambda(1)$.

Definition 2. The homotopy fiber of a map $f : X \to Y$, denoted P_f , is the pullback of

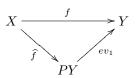
$$X \xrightarrow{f} Y \xleftarrow{e} PY,$$

i.e., $P_f = \{(x, \lambda) \in X \times PY \mid \lambda(1) = x\}$, which is a subspace of $X \times PY$. Let $q_f : P_f \to X : (x, \lambda) \to x$.

1. Prove that a pointed map $f: (X, x_0) \to (Y, y_0)$ is nullhomotopic if and only if there is a pointed map

$$f: (X, x_0) \to (PY, c_{y_0})$$

such that

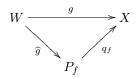


commutes.

2. Let $(W, w_0) \xrightarrow{g} (X, x_0) \xrightarrow{f} (Y, y_0)$ be pointed maps. Prove that $f \circ g$ is nullhomotopic if and only if there exists a pointed map

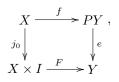
$$\widehat{g}: (W, w_0) \to (P_f, (x_0, c_{y_0}))$$

such that



commutes.

- 3. Identify the homotopy fibers of the inclusion of the basepoint $\{y_0\}$ into Y, of $e: PY \to Y$ and of $q_f: P_f \to X$, for any pointed map $f: (X, x_0) \to (Y, y_0)$. Show that $\Omega P_f \simeq_* P_{\Omega f}$ as well.
- 4. Prove that e satisfies the homotopy lifting property, i.e., for every commuting diagram



where $j_0(x) = (x, 0)$, there is a map $\widehat{F} : X \times I \to PY$ such that $e \circ \widehat{F} = F$ and $\widehat{F} \circ j_0 = f$.

5. Prove that for any pointed map $f : (X, x_0) \to (Y, y_0)$ (respectively, *H*-morphism $f : (X, x_0, \mu) \to (Y, y_0, \nu)$), the sequence $P_f \xrightarrow{q_f} X \xrightarrow{f} Y$ is *h*-exact, i.e., for any pointed space (W, w_0) , the sequence of set maps (respectively, of homomorphisms)

$$[W, P_f]_* \xrightarrow{(q_f)_*} [W, X]_* \xrightarrow{f_*} [W, Y]_*$$

is exact.

6. Given a pointed map $f:(X,x_0) \to (Y,y_0)$, explain how to obtain a sequence of pointed maps

$$\dots \to \Omega^2 X \to \Omega^2 Y \to P_{\Omega f} \to \Omega X \to \Omega Y \to P_f \to X \to Y$$

(basepoints suppressed) by iterating the homotopy fiber construction: the dual Barratt-Puppe sequence. Conclude, using exercise 5, that for any pointed space (W, w_0) , the sequence

$$\cdots \to [W, P_{\Omega f}]_* \to [W, \Omega X] \to [W, \Omega Y]_* \to [W, P_f]_* \to [W, X]_* \to [W, Y]_*$$

is exact.