Homotopie et Homologie Exercise Set 8

17.11.2011

Throughout these exercises, space means topological space, map means continuous map, and I denotes $[0,1]$.

1. Let A be a subspace of X, and let $x_{0} \in A$. Let P_{i} denote the homotopy fiber of the inclusion $i: A \hookrightarrow X$ (cf. Exercise Set 6). Show that

$$
\pi_{n}(X, A) \cong \pi_{n-1} P_{i} .
$$

2. Let $f: X \rightarrow Y$ be any pointed map, and let P_{f} denote the homotopy fiber of f. Prove that there is an exact sequence
$\cdots \rightarrow \pi_{n} P_{f} \rightarrow \pi_{n} X \rightarrow \pi_{n} Y \rightarrow \pi_{n-1} P_{f} \rightarrow \cdots \rightarrow \pi_{1} Y \rightarrow \pi_{0} P_{f} \rightarrow \pi_{0} X \rightarrow \pi_{0} Y$
and describe the homomorphisms in the sequence. This is the long exact sequence in homotopy of the fiber sequence $P_{f} \xrightarrow{q_{f}} X \xrightarrow{f} Y$.

Hint 1. The existence of this long exact sequence can be proved using either the dual Barratt-Puppe sequence or the long exact sequence of a pair. Try to do it both ways!
3. Prove that if X is contractible, then $\pi_{n-1} P_{f} \cong \pi_{n} Y$ for all pointed maps $f: X \rightarrow Y$.
4. Let $\left\{x_{0}\right\} \subseteq A \subseteq B \subseteq X$ be a sequence of subspace inclusions. Show that there is an exact sequence

$$
\cdots \rightarrow \pi_{n}(B, A) \rightarrow \pi_{n}(X, A) \rightarrow \pi_{n}(X, B) \xrightarrow{\partial_{n}} \pi_{n-1}(B, A) \rightarrow \cdots .
$$

Hint 2. The connecting homomorphism ∂_{n} is equal to the composite

$$
\pi_{n}(X, B) \rightarrow \pi_{n-1} B \rightarrow \pi_{n-1}(B, A) .
$$

5. Consider the map $h: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ given by

$$
h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} x_{3}+x_{2} x_{4}, x_{2} x_{3}-x_{1} x_{4}, x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right) .
$$

(a) Show that h restricts and corestricts to a map $h: S^{3} \rightarrow S^{2}$. (This is the famous Hopf map.)
(b) Show that the homotopy fiber P_{h} of h has the homotopy type of S^{1}. Hint 3. Start by showing that $h^{-1}(v) \cong S^{1}$ for any $v \in S^{2}$.
(c) Show that $\pi_{n} S^{1}=\{0\}$ for all $n>1$.

Hint 4. Use the relation $\pi_{n} X \cong \pi_{n-1} \Omega X$.
(d) It follows from the Freudenthal suspension theorem (to be proved later this semester) that

$$
\pi_{k} S^{n} \cong \pi_{k+1} S^{n+1} \quad \forall k<2 n-1
$$

Use this isomorphism to prove that $\pi_{k} S^{n}=\{0\}$ for all $1 \leq k<n$.
Hint 5. Recall that Seifert-van Kampen implies that S^{n} is simply connected for all $n \geq 2$.
(e) Show that $\pi_{2} S^{2} \cong \mathbb{Z}$ (whence, by Freudenthal, $\pi_{n} S^{n} \cong \mathbb{Z}$ for all n) and that $\pi_{3} S^{2} \cong \mathbb{Z}$.
Hint 6. Use the long exact sequence in homotopy of h.

