Homotopie et Homologie Exercise Set 9

24.11.2011

Throughout these exercises, space means topological space, map means continuous map, and I denotes $[0,1]$.

1. Let $j: A \hookrightarrow X$ denote the inclusion of a subspace.
(a) Prove that if j is a cofibration, then so is

$$
j \times I d_{Z}: A \times Z \rightarrow X \times Z
$$

for all spaces Z.
(b) Conclude that for all maps $f: A \rightarrow Y$, the induced inclusion

$$
Y \hookrightarrow Y \cup_{f} X=Y \coprod X / \sim,
$$

where $a \sim f(a)$ for all $a \in A$, is also a cofibration.
2. Prove that if $i: A \hookrightarrow B$ and $j: B \hookrightarrow X$ are cofibrations, then so is $j \circ i: A \hookrightarrow X$. Prove more generally that if

$$
A_{0} \xrightarrow{i_{0}} A_{1} \xrightarrow{i_{1}} A_{2} \xrightarrow{i_{2}} \cdots
$$

are inclusions that are cofibrations, then the inclusion $A_{0} \hookrightarrow \bigcup_{n \geq 0} A_{n}$ is a cofibration, if the topology on $\bigcup_{n \geq 0} A_{n}$ satisfies:

$$
C \subseteq \bigcup_{n \geq 0} A_{n} \text { closed } \Leftrightarrow C \cap A_{n} \text { closed in } A_{n} \forall n
$$

3. (An interesting class of cofibrations.) Let X be a space, with subspace $A \subset V$. If there is a homotopy $H: V \times I \rightarrow X$ such that

- $H(v, 0)=v$ for all $v \in V$,
- $H(a, t)=a$ for all $a \in A$ and $t \in I$, and
- $H(v, 1) \in A$ for all $v \in V$,
then A is a strong deformation retract ($S D R$) of V in X.
A space X is perfectly normal if for every pair of disjoint closed sets C and D in X, there is a continous map $\varphi: X \rightarrow I$ such that $C=\varphi^{-1}(0)$ and $D=\varphi^{-1}(1)$.
(a) Prove that S^{n} is an SDR of $D^{n+1} \backslash\{0\}$ in D^{n+1} for all $n \geq 0$.
(b) Prove that every metrizable space is perfectly normal.
(c) Let X be a perfectly normal space, and let A be a subspace of X. Prove that the inclusion $A \hookrightarrow X$ is a cofibration if there is an open subset V of X such that A is an SDR of V in X.

4. (Important examples of cofibrations.)
(a) Prove that for all maps $f: S^{n} \rightarrow Y$, the inclusion $Y \hookrightarrow Y \cup_{f} D^{n+1}$ is a cofibration. (Thus, for example, $S^{1} \hookrightarrow \mathbb{R} P^{2}$ is a cofibration.)
(b) Prove that for all maps $f: X \rightarrow Y$, the inclusion $i: Y \hookrightarrow C_{f}$ is a cofibration.
5. Prove that an inclusion $j: A \hookrightarrow X$ is a cofibration if and only if the map

$$
\operatorname{Map}(X \times I, Y) \rightarrow \operatorname{Map}(X, Y) \times_{\operatorname{Map}(A, Y)} \operatorname{Map}(A \times I, Y)
$$

induced by

$$
j_{0}^{*}: \operatorname{Map}(X \times I, Y) \rightarrow \operatorname{Map}(X, Y): H \mapsto H \circ j_{0}
$$

and

$$
\left(j \times I d_{I}\right)^{*}: \operatorname{Map}(X \times I, Y) \rightarrow \operatorname{Map}(A \times I, Y): H \mapsto H \circ\left(j \times I d_{I}\right)
$$

is surjective.

