Homotopie et Homologie Exercise Set 9

24.11.2011

Throughout these exercises, space means topological space, map means continuous map, and I denotes [0, 1].

- 1. Let $j: A \hookrightarrow X$ denote the inclusion of a subspace.
 - (a) Prove that if j is a cofibration, then so is

$$j \times Id_Z : A \times Z \to X \times Z$$

for all spaces Z.

(b) Conclude that for all maps $f: A \to Y$, the induced inclusion

$$Y \hookrightarrow Y \cup_f X = Y \coprod X / \sim,$$

where $a \sim f(a)$ for all $a \in A$, is also a cofibration.

2. Prove that if $i : A \hookrightarrow B$ and $j : B \hookrightarrow X$ are cofibrations, then so is $j \circ i : A \hookrightarrow X$. Prove more generally that if

$$A_0 \xrightarrow{i_0} A_1 \xrightarrow{i_1} A_2 \xrightarrow{i_2} \cdots$$

are inclusions that are cofibrations, then the inclusion $A_0 \hookrightarrow \bigcup_{n \ge 0} A_n$ is a cofibration, if the topology on $\bigcup_{n \ge 0} A_n$ satisfies:

$$C \subseteq \bigcup_{n \ge 0} A_n$$
 closed $\Leftrightarrow C \cap A_n$ closed in $A_n \forall n$.

- 3. (An interesting class of cofibrations.) Let X be a space, with subspace $A \subset V$. If there is a homotopy $H: V \times I \to X$ such that
 - H(v,0) = v for all $v \in V$,
 - H(a,t) = a for all $a \in A$ and $t \in I$, and
 - $H(v,1) \in A$ for all $v \in V$,

then A is a strong deformation retract (SDR) of V in X.

A space X is *perfectly normal* if for every pair of disjoint closed sets C and D in X, there is a continuum map $\varphi : X \to I$ such that $C = \varphi^{-1}(0)$ and $D = \varphi^{-1}(1)$.

- (a) Prove that S^n is an SDR of $D^{n+1} \setminus \{0\}$ in D^{n+1} for all $n \ge 0$.
- (b) Prove that every metrizable space is perfectly normal.
- (c) Let X be a perfectly normal space, and let A be a subspace of X. Prove that the inclusion $A \hookrightarrow X$ is a cofibration if there is an open subset V of X such that A is an SDR of V in X.
- 4. (Important examples of cofibrations.)
 - (a) Prove that for all maps $f: S^n \to Y$, the inclusion $Y \hookrightarrow Y \cup_f D^{n+1}$ is a cofibration. (Thus, for example, $S^1 \hookrightarrow \mathbb{R}P^2$ is a cofibration.)
 - (b) Prove that for all maps $f: X \to Y$, the inclusion $i: Y \hookrightarrow C_f$ is a cofibration.
- 5. Prove that an inclusion $j: A \hookrightarrow X$ is a cofibration if and only if the map

$$\operatorname{Map}(X \times I, Y) \to \operatorname{Map}(X, Y) \times_{\operatorname{Map}(A, Y)} \operatorname{Map}(A \times I, Y)$$

induced by

$$j_0^* : \operatorname{Map}(X \times I, Y) \to \operatorname{Map}(X, Y) : H \mapsto H \circ j_0$$

and

$$(j \times Id_I)^* : \operatorname{Map}(X \times I, Y) \to \operatorname{Map}(A \times I, Y) : H \mapsto H \circ (j \times Id_I)$$

is surjective.