Homotopie et Homologie Exercise Set 10

02.12.2010

Throughout these exercises, space means topological space, map means continuous map, and I denotes [0, 1].

1. Show that if X and Y are CW-complexes, and X and Y both have countably many cells, then $X \times Y$ is also a CW-complex.

Hint 1. For all $0 \le k \le n$,

$$(D^n, S^{n-1}) \cong (D^k \times D^{n-k}, S^{k-1} \times D^{n-k} \cup D^k \times S^{n-k-1}).$$

- 2. Let A be a subcomplex of a CW-complex X.
 - (a) Show that the inclusion map $A \to X$ is a cofibration.
 - (b) Show that X/A is also a CW-complex.
- 3. The smash product of two pointed spaces (X, x_0) and (Y, y_0) is the space

$$X \wedge Y = X \times Y / X \lor Y,$$

with basepoint equal to the equivalence class of (x_0, y_0) .

- (a) Show that $S^1 \wedge X \cong \Sigma X$, for all (X, x_0) .
- (b) Let X and Y be CW-complexes such that $X_{r-1} = \{x_0\}$ and $Y_{s-1} = \{y_0\}$. Show that $X \wedge Y$ is a CW-complex with $(X \wedge Y)_{r+s-1} = \{[x_0, y_0]\}$.
- (c) Conclude that $\Sigma^n X$ is at least (n-1)-connected, for all (X, x_0) .
- 4. Prove that a map $f: X \to Y$ is an *n*-equivalence if and only if the pair (M_f, X) is *n*-connected, where M_f is the mapping cylinder of f, i.e., the pushout of $X \times I \stackrel{j_0}{\longleftrightarrow} X \stackrel{f}{\to} Y$, and X is seen as a subspace of M_f by inclusion into the top of the cylinder.
- 5. Prove that the mapping cylinder of a cellular map is a CW-complex.

- 6. Let G be a discrete group acting on the right on a space X, i.e., there is a map $\rho : X \times G \to X : (x, a) \mapsto x \cdot a$ such that $(x \cdot a) \cdot b = x \cdot (ab)$ for all $x \in X$ and $a, b \in G$ and $x \cdot e = x$ for all $x \in X$, where e is the neutral element of G. Show that if X is a CW-complex, and ρ is cellular, then the orbit space X/G is a CW-complex.
- 7. Let $X = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{Z}_+\} \subset \mathbb{R}$. Show that X is not homotopy equivalent to a CW-complex.