Homotopie et Homologie
 Exercise Set 11

09.12.2010

Throughout these exercises, space means topological space, map means continuous map and I denotes $[0,1]$.

1. For any finite CW-complex X, let $\zeta_{n}(X)$ denote the number of n-cells of X. The Euler characteristic of X is then

$$
\chi(X):=\sum_{n \geq 0}(-1)^{n} \zeta_{n}(X) .
$$

Let A be a subcomplex of X, and let $f: A \rightarrow Y$ be a cellular map, where Y is also finite.
(a) Show that the pushout $X \coprod_{A} Y$ of $Y \stackrel{f}{\leftarrow} A \hookrightarrow X$ is a CW-complex. (Note: the finiteness assumptions are not necessary here.)
(b) Find and prove a formula for $\chi\left(X \coprod_{A} Y\right)$ in terms of $\chi(A), \chi(X)$ and $\chi(Y)$.
2. The Lusternik-Schnirelmann category of a path-connected, pointed space (X, x_{0}), denoted $\operatorname{cat}(X)$, is the least integer n such that X admits an open cover $\left\{U_{0}, \ldots, U_{n}\right\}$ where each U_{i} is contractible in X, i.e., there exist a homotopies $H_{i}: X \times I \rightarrow X$ such that $H_{i}(-, 0)=I d_{X}$ and $H_{i}(u, 1)=x_{0}$ for all $u \in U_{i}$.
(a) Prove that Lusternik-Schnirelmann category is a homotopy invariant.
(b) Prove that if X is a CW-complex of dimension n, then $\operatorname{cat}(X) \leq n$.
3. We see in this exercise how to construct a canonical CW-approximation to a space X.
For any $n \in \mathbb{N}$, let

$$
\Delta^{n}=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} t_{i}=1, t_{i} \geq 0 \forall i\right\}
$$

and let

$$
\partial^{i}: \Delta^{n-1} \rightarrow \Delta^{n}:\left(t_{0}, \ldots, t_{n-1}\right) \mapsto\left(t_{0}, \ldots, t_{i-1}, 0, t_{i}, \ldots, t_{n-1}\right)
$$

and

$$
\sigma^{i}: \Delta^{n+1} \rightarrow \Delta^{n}:\left(t_{0}, \ldots, t_{n+1}\right) \mapsto\left(t_{0}, \ldots, t_{i}+t_{i+1}, \ldots, t_{n+1}\right)
$$

for all $0 \leq i \leq n$.
For any space X, let

$$
S_{n}(X)=\left\{\varphi: \Delta^{n} \rightarrow X \mid \sigma \text { continuous }\right\}
$$

seen as a discrete topological space, and

$$
\Gamma X=\coprod_{n \geq 0} S_{n}(X) \times \Delta^{n} / \sim,
$$

where

$$
\left(\varphi \circ \sigma^{i}, \mathbf{t}\right) \sim\left(\varphi, \sigma^{i}(\mathbf{t})\right) \text { and }\left(\varphi \circ \partial^{i}, \mathbf{s}\right) \sim\left(\varphi, \partial^{i}(\mathbf{s})\right)
$$

for all $\varphi \in S_{n}(X), \mathbf{t} \in \Delta^{n+1}, \mathbf{s} \in \Delta^{n-1}, 0 \leq i \leq n$ and $n \geq 0$. Endow ΓX with the obvious quotient topology.
(a) Show that there is a CW-structure on ΓX such that the quotient map $\coprod_{n \geq 0} S_{n}(X) \times \Delta^{n} \rightarrow \Gamma X$ is a cellular map.
(b) Show that the evaluation maps ev $: S_{n}(X) \times \Delta^{n} \rightarrow X:(\varphi, \mathbf{t}) \mapsto \varphi(\mathbf{t})$ together give rise to a continuous map $\varepsilon_{X}: \Gamma X \rightarrow X$.
(c) Show that any map $f: X \rightarrow Y$ gives rise to a map $\Gamma f: \Gamma X \rightarrow \Gamma Y$ such that

commutes.
Remark 1. The map ε_{X} behaves very nicely: it satisfies a universal property (which we do not spell out here), and it is always a weak equivalence!

