Homotopie et Homologie Exercise Set 12

16.12.2010

Throughout these exercises, *space* means *topological space*, and *map* means *continuous map*.

1. Complex projective space of dimension n is

$$\mathbb{C}P^n = \mathbb{C}^{n+1} \smallsetminus \{0\} / \sim$$

where $z \sim z'$ if and only if there exists $\lambda \in \mathbb{C}$ such that $z = \lambda z'$. Prove that $SP^n(S^2) \cong \mathbb{C}P^n$.

2. Let (X, x_0) and (Y, y_0) be pointed space. The canonical maps

 $r_X: X \lor Y \to X$ and $r_Y: X \lor Y \to Y$

that send Y (respectively, X) to the basepoint, induce maps

$$SPr_X : SP(X \lor Y) \to SPX$$
 and $SPr_Y : SP(X \lor Y) \to SPY$

and therefore a map

$$\delta: SP(X \lor Y) \to SP X \times SP Y.$$

Show that δ is a weak homotopy equivalence and that therefore

$$\widetilde{H}_n(X \lor Y) \cong \widetilde{H}_n(X) \oplus \widetilde{H}_n(Y)$$

for all n.

Definition 1. Let G be an abelian group, and let $n \ge 2$. An *Eilenberg-MacLane space of type* (G, n) is a pointed space (X, x_0) such that $\pi_n(X, x_0) \cong G$ and $\pi_k(X, x_0)) = 0$ if $k \ne n$. A *Moore space of type* (G, n) is a pointed space (X, x_0) such that $\widetilde{H}_n(X, x_0) \cong G$ and $\widetilde{H}_k(X, x_0)) = 0$ if $k \ne n$.

Conventions 2. An Eilenberg-MacLane space of type (G, n) is usually denoted K(G, n), while a Moore space of type (G, n) is usually denoted M(G, n).

Remark 3. Recall that for all $n \ge 1$, S^n is a Moore space of type (\mathbb{Z}, n) , i.e., that $SP(S^n)$ is an Eilenberg-MacLane space of type (\mathbb{Z}, n) .

- 3. Let $m \in \mathbb{N}$, and define $\lambda_m : S^1 \to S^1$ by $\lambda_m(e^{i\theta}) = e^{im\theta}$.
 - (a) Prove that $\pi_1 \lambda_m : \pi_1 S^1 \to \pi_1 S^1$ is given by multiplication by m.
 - (b) Prove that C_{λ_m} is a a Moore space of type $(\mathbb{Z}/m, 1)$, i.e., that $SP(C_{\lambda_m})$ is an Eilenberg-MacLane space of type $(\mathbb{Z}/m, 1)$. Hint 4. Use the quasi-fibration obtained by applying SP to the sequence $S^1 \xrightarrow{\lambda_m} S^1 \to C_{\lambda_m}$.
 - (c) Let n > 1. Prove that $\Sigma^{n-1}C_{\lambda_m}$ is a Moore space of type $(\mathbb{Z}/m, n)$, i.e., that $SP(\Sigma^{n-1}C_{\lambda_m})$ is an Eilenberg-MacLane space of type $(\mathbb{Z}/m, n)$.
 - (d) Let G be any finitely generated abelian group, and let $n \ge 1$. Explain how to construct a Moore space of type (G, n) and an Eilenberg-MacLane space of the same type.
- 4. Let $f: (X, x_0) \to (Y, y_0)$ be a map of CW-complexes. Prove that there is a long exact sequence

This the long exact sequence in (reduced) homology associated to a map.

5. Prove that for all CW-pairs (X, A), the sequence

$$\cdots \longrightarrow H_{n+1}(X,A) \xrightarrow{\partial_{n+1}} H_nA \longrightarrow H_nX \longrightarrow H_n(X,A) \xrightarrow{\partial_n} \cdots \longrightarrow H_1(X,A)$$

$$\downarrow^{\partial_1}$$

$$H_0(X,A) \longleftarrow \widetilde{H}_0X \longleftarrow \widetilde{H}_0A$$

is exact.

Hint 5. To prove exactness at H_nX , $H_n(X, A)$ and H_nA , apply the sequence of Exercise 4 to the inclusions $A_+ \hookrightarrow X_+$ and $X \hookrightarrow X_+ \coprod_{A_+} CA_+$ and to the quotient map $X_+ \coprod_{A_+} CA_+ \to \Sigma A_+$, respectively.

6. Prove that excision for excisive triads is equivalent to the following property.

Let (X, A) be a pair of spaces. For all $U \subseteq A$ satisfying $\overline{U} \subseteq \mathring{A}$, the inclusion $(X \smallsetminus U, A \smallsetminus U) \hookrightarrow (X, A)$ induces an isomorphism

$$H_n(X, A) \cong H_n(X \smallsetminus U, A \smallsetminus U) \quad \forall n \ge 0.$$

In other words, one can excise a nice enough subset without changing the homology of the pair.