Homotopie et Homologie Exercise Set 13

23.12.2010

Throughout these exercises, *space* means *topological space*, and *map* means *continuous map*.

1. Let G be an abelian group, and let M(G, n) be a Moore space of type (G, n) (cf. Exercise 1, Exercise set 13). The nth-reduced homology group with coefficients in G of a pointed space (X, x_0) is

$$\widetilde{H}_n(X;G) := \pi_n \Big(SP \big(X \wedge M(G,1) \big) \Big).$$

Prove that $\{\widetilde{H}_n(-;G) \mid n \geq 0\}$ satisfies the Eilenberg-Steenrod axioms for a reduced homology theory, with corresponding Dimension Axiom

$$\widetilde{H}_n(S^0;G) = \begin{cases} G & : n = 0\\ 0 & : n \neq 0. \end{cases}$$

2. For any pointed space (X, x_0) , let $h_X : \pi_* X \to \widetilde{H}_* X$ be the Hurewicz homomorphism. Let $\iota_n = h_{S^n}([Id_{S^n}])$, for all $n \ge 0$. Prove that for all $[\alpha] \in \pi_n X$,

$$h_X([\alpha]) = H_n(\alpha)(\iota_n).$$

Remark 1. When another, less "homotopical" approach has been taken to defining homology groups, the formula above is often given as the *definition* of the general Hurewicz homomorphism, once it has been specified on spheres.

3. Prove the following result, which can be seen as analogous to the Seifertvan Kampen Theorem.

Theorem 2 (Mayer-Vietoris). If (X; A, B) is an excisive triad, then the sequence

$$\cdots \xrightarrow{\Delta_{n+1}} H_n(A \cap B) \xrightarrow{\psi_n} H_n(A) \oplus H_n(B) \xrightarrow{\varphi} H_nX \xrightarrow{\Delta_n} \cdots$$

is exact, where

.

- $\psi_n(c) = (H_n(i)(c), H_n(j)(c))$, where $i : A \cap B \hookrightarrow A$ and $j : A \cap B \hookrightarrow B$ are the inclusions;
- $\varphi_n(a,b) = H_n(k)(a) H_n(\ell)(b)$, where $k : A \hookrightarrow X$ and $\ell : B \hookrightarrow X$ are the inclusions; and
- Δ is the composite

$$H_n X \to H_n(X, B) \cong H_n(A, A \cap B) \xrightarrow{\partial} H_{n-1}(A \cap B),$$

where ∂ is the connecting homomorphism of the Exactness Axiom.

- 4. Recall the definition of complex projective space $\mathbb{C}P^n$ from Exercise 1, Exercise set 12.
 - (a) Show that $\mathbb{C}P^n$ admits a CW-decomposition with exactly one 2k-cell for all $0 \le k \le n$ and no odd-dimensional cells.
 - (b) Use the Mayer-Vietoris Theorem to compute $H_*\mathbb{C}P^n$.

Joyeuses fêtes de fin d'année!!