Homotopie et Homologie Exercise Set 2

30.09.2010

Throughout these exercises, \cong denotes homeomorphism of topological spaces or isomorphism of groups, and *space* means *topological space*.

- 1. Exercises 6, 7, and 8 from Exercise Set 1!
- 2. Let (X, x_0) and (Y, y_0) be pointed spaces. Show that there is an isomorphism

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

3. Let T^2 be the 2-torus $S^1 \times S^1$. Show that every homomorphism

$$\varphi: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

can be *realized topologically* by a continous self-map of T^2 , i.e., there exists $f: T^2 \to T^2$ such that $\pi_1 f = \varphi$.

- 4. Let $f : (X, x_0) \to (Y, y_0)$ be a based, continuous map. If f is surjective (respectively, injective), is the induced homomorphism $\pi_1 f : \pi_1(X, x_0) \to \pi_1(Y, y_0)$ necessarily surjective (respectivement, injective)?
- 5. (The Brouwer Fixed Point Theorem) Let $D^2 = \{z \in \mathbb{C} \mid |z| \leq 1\}$. Use the fact that $\pi_1(S^1, 1) \cong \mathbb{Z}$ to prove that every continuous map $f: D^2 \to D^2$ has a fixed point, i.e., there exists $z \in D^2$ such that f(z) = z. (Hint: prove first that the inclusion $S^1 \hookrightarrow D^2$ does not admit a retraction, i.e., there is no continuous map $r: D^2 \to S^1$ such that $r \circ i = Id_{S^1}$.)
- 6. (The Borsuk-Ulam Theorem) Use the isomorphism deg : $\pi_1(S^1, 1) \xrightarrow{\cong} \mathbb{Z}$ to prove that if $f: S^2 \to \mathbb{R}^2$ is continuous, then there exists $x \in S^2$ such that f(x) = f(-x).