Homotopie et Homologie Exercise Set 3

07.10.2010

Throughout these exercises, I denotes the unit interval [0, 1], \cong denotes homeomorphism of topological spaces or isomorphism of groups, and *space* means *topological space*.

- 1. For any positive integer n, explain how to construct a path-connected space X_n from a circle and a disk such that $\pi_1(X_n, x_0) \cong \mathbb{Z}/n\mathbb{Z}$. Show that X_2 is homeomorphic to $\mathbb{R}P^2$, the *real projective plane*, which is usually defined as the quotient of D^2 by the relation that identifies antipodal points on its boundary.
- 2. Prove that $G * \{e\} \cong G$ for every group G.
- 3. Let $f_1: G_0 \to G_1$ and $f_2: G_0 \to G_2$ be group homomorphisms. The *pushout* (or *amalgamated sum*) of f_1 and f_2 consists of a group H and two homomorphisms $g_1: G_1 \to H$ and $g_2: G_2 \to H$ such that $g_1f_1 = g_2f_2$ and such that for any pair of homomorphisms $h_1: G_1 \to K$ and $h_2: G_2 \to K$ such that

$$\begin{array}{c|c} G_0 \xrightarrow{g_1} & G_1 \\ g_2 & & & \\ g_2 & & & \\ G_2 \xrightarrow{h_2} & K \end{array}$$

commutes, there is a unique homomorphism $h: H \to K$ such that

commutes. Prove that pushouts of pairs of group homomorphisms exist and are unique up to isomorphism.

4. Let $h:W\to X$ and $k:W\to Y$ be continuous maps. The pushout of h and k is the quotient space

$$X\coprod_W Y = X\coprod Y/\sim,$$

where \sim is the equivalence relation generated by $h(w) \sim k(w)$ for all $w \in W$. Show that for any pair of continuous maps $f : X \to Z$ and $g: Y \to Z$ such that

commutes, there is a unique continuous map $f+g:X \coprod_W Y \to Z$ such that

commutes. Formulate and prove a pointed version of this result.

5. Let $f: X \to Z$ and $g: Y \to Z$ be continuous maps. The *pullback* of f and g is the space

$$X \underset{Z}{\times} Y = \{(x, y) \in X \times Y \mid f(x) = g(y)\},\$$

topologized as a subspace of $X \times Y$. Show that for any pair of continuous maps $h: W \to X$ and $k: W \to Y$ such that

commutes, there is a unique continuous map $(h,k):W\to X\underset{Z}{\times} Y$ such that

commutes. Formulate and prove a pointed version of this result.