Homotopie et Homologie Exercise Set 3

07.10.2010

Throughout these exercises, I denotes the unit interval $[0,1]$, \cong denotes homeomorphism of topological spaces or isomorphism of groups, and space means topological space.

1. For any positive integer n, explain how to construct a path-connected space X_{n} from a circle and a disk such that $\pi_{1}\left(X_{n}, x_{0}\right) \cong \mathbb{Z} / n \mathbb{Z}$. Show that X_{2} is homeomorphic to $\mathbb{R} P^{2}$, the real projective plane, which is usually defined as the quotient of D^{2} by the relation that identifies antipodal points on its boundary.
2. Prove that $G *\{e\} \cong G$ for every group G.
3. Let $f_{1}: G_{0} \rightarrow G_{1}$ and $f_{2}: G_{0} \rightarrow G_{2}$ be group homomorphisms. The pushout (or amalgamated sum) of f_{1} and f_{2} consists of a group H and two homomorphisms $g_{1}: G_{1} \rightarrow H$ and $g_{2}: G_{2} \rightarrow H$ such that $g_{1} f_{1}=g_{2} f_{2}$ and such that for any pair of homomorphisms $h_{1}: G_{1} \rightarrow K$ and $h_{2}: G_{2} \rightarrow K$ such that

commutes, there is a unique homomorphism $h: H \rightarrow K$ such that

commutes. Prove that pushouts of pairs of group homomorphisms exist and are unique up to isomorphism.
4. Let $h: W \rightarrow X$ and $k: W \rightarrow Y$ be continuous maps. The pushout of h and k is the quotient space

$$
X \coprod_{W} Y=X \coprod Y / \sim,
$$

where \sim is the equivalence relation generated by $h(w) \sim k(w)$ for all $w \in W$. Show that for any pair of continuous maps $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ such that

commutes, there is a unique continuous map $f+g: X \coprod_{W} Y \rightarrow Z$ such that

commutes. Formulate and prove a pointed version of this result.
5. Let $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ be continuous maps. The pullback of f and g is the space

$$
X \underset{Z}{\times} Y=\{(x, y) \in X \times Y \mid f(x)=g(y)\},
$$

topologized as a subspace of $X \times Y$. Show that for any pair of continuous maps $h: W \rightarrow X$ and $k: W \rightarrow Y$ such that

commutes, there is a unique continuous map $(h, k): W \rightarrow X \underset{Z}{\times} Y$ such that

commutes. Formulate and prove a pointed version of this result.

