Homotopie et Homologie Exercise Set 5

Throughout these exercises, space means topological space.

1. Let $\left(X, x_{0}, \psi\right)$ be a co- H-space. Show that if $f:\left(X, x_{0}\right) \rightarrow\left(X^{\prime}, x_{0}^{\prime}\right)$ is a based homotopy equivalence, then X^{\prime} admits a co- H-space structure with respect to which f is a co- H-morphism. Show that, moreover, if X is actually a co- H-group, then so is X^{\prime}. In other words, "to be a co- H-space (respectively, co- H -group)" is a homotopy invariant notion.
2. Let $\left(X, x_{0}, \psi\right)$ be a co- H-space, and let $\left(Y, y_{0}\right)$ be any based space. Show that Map $\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right)$ admits an H-space structure, which is natural in the sense that if $f:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$ is a based, continuous map, then the induced map

$$
f_{*}: \operatorname{Map}\left(\left(X, x_{0}\right),\left(Y, y_{0}\right)\right) \rightarrow \operatorname{Map}\left(\left(X, x_{0}\right),\left(Z, z_{0}\right)\right)
$$

is an H-morphism.
3. Let (X, x_{0}) be any based space. Check that the comultiplication and coinverse maps on $\Sigma\left(X, x_{0}\right)$ defined in class do indeed satisfy the axioms of a co- H-group.
4. It is easy to see that there are H-groups with strictly associative multiplication, strict units and strict inverses: any topological group (S^{1}, $G L(n, \mathbb{R}), O(n), U(n), \ldots)$ is an example of such. Show that, on the other hand, there are no nontrivial, strict co- H-spaces.
5. For any based, continuous map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$, show that $C_{f} / Y \cong$ $\Sigma\left(X, x_{0}\right)$ (cf. Exercise Set 1, \# 8).
6. Let $f:\left(X, x_{0}\right) \rightarrow\left(X^{\prime}, x_{0}^{\prime}\right)$ be a pointed, continuous map. Explain how to define $\Sigma f: \Sigma\left(X, x_{0}\right) \rightarrow \Sigma\left(X^{\prime}, x_{0}^{\prime}\right)$ and $\Omega f: \Omega\left(X, x_{0}\right) \rightarrow \Omega\left(X^{\prime}, x_{0}^{\prime}\right)$ so that Σf is a co- H-morphism and Ωf is an H-morphism.
7. For "any" pointed space (X, x_{0}), define pointed, continuous maps

$$
\eta_{\left(X, x_{0}\right)}:\left(X, x_{0}\right) \rightarrow \Omega \Sigma\left(X, x_{0}\right)
$$

and

$$
\varepsilon_{\left(X, x_{0}\right)}: \Sigma \Omega\left(X, x_{0}\right) \rightarrow\left(X, x_{0}\right)
$$

such that for all pointed, continuous maps $f:\left(X, x_{0}\right) \rightarrow\left(X^{\prime}, x_{0}^{\prime}\right)$,

$$
\Omega \Sigma f \circ \eta_{\left(X, x_{0}\right)}=\eta_{\left(X^{\prime}, x_{0}^{\prime}\right)} \circ f:\left(X, x_{0}\right) \rightarrow \Omega \Sigma\left(X^{\prime}, x_{0}^{\prime}\right),
$$

and

$$
f \circ \varepsilon_{\left(X, x_{0}\right)}=\varepsilon_{\left(X^{\prime}, x_{0}^{\prime}\right)} \circ \Sigma \Omega f: \Sigma \Omega\left(X, x_{0}\right) \rightarrow\left(X^{\prime}, x_{0}^{\prime}\right),
$$

while
$\alpha: \operatorname{Map}\left(\Sigma\left(X, x_{0}\right),\left(X^{\prime}, x_{0}^{\prime}\right)\right) \rightarrow \operatorname{Map}\left(\left(X, x_{0}\right), \Omega\left(X^{\prime}, x_{0}^{\prime}\right)\right): g \mapsto \Omega g \circ \eta_{\left(X, x_{0}\right)}$
and
$\beta: \operatorname{Map}\left(\left(X, x_{0}\right), \Omega\left(X^{\prime}, x_{0}^{\prime}\right)\right) \rightarrow \operatorname{Map}\left(\Sigma\left(X, x_{0}\right),\left(X^{\prime}, x_{0}^{\prime}\right)\right): g \mapsto \varepsilon_{\left(X^{\prime}, x_{0}^{\prime}\right)} \circ \Sigma g$ are mutually inverse homeomorphisms.

