Homotopie et Homologie Exercise Set 7

04.11.2010

Throughout these exercises, space means topological space, map means continuous map, and I denotes [0, 1].

1. Let A be a subspace of X, and let $x_0 \in A$. Let P_i denote the homotopy fiber of the inclusion $i : A \hookrightarrow X$ (cf. Definition 2, Exercise Set 6). Show that

 $\pi_n(X, A) \cong \pi_{n-1} P_i.$

2. Let $f: X \to Y$ be any pointed map, and let P_f denote the homotopy fiber of f. Prove that there is an exact sequence

$$\cdots \to \pi_n P_f \to \pi_n X \to \pi_n Y \to \pi_{n-1} P_f \to \cdots \to \pi_1 Y \to \pi_0 P_f \to \pi_0 X \to \pi_0 Y$$

and describe the homomorphisms in the sequence. This is the long exact sequence in homotopy of the fiber sequence $P_f \xrightarrow{q_f} X \xrightarrow{f} Y$.

Hint 1. The existence of this long exact sequence can be proved using either the dual Barratt-Puppe sequence or the long exact sequence of a pair. Try to do it both ways!

- 3. Prove that if X is contractible, then $\pi_{n-1}P_f \cong \pi_n Y$ for all pointed maps $f: X \to Y$.
- 4. Let $\{x_0\} \subseteq A \subseteq B \subseteq X$ be a sequence of subspace inclusions. Show that there is an exact sequence

 $\cdots \to \pi_n(B, A) \to \pi_n(X, A) \to \pi_n(X, B) \xrightarrow{\partial_n} \pi_{n-1}(B, A) \to \cdots$

Hint 2. The *connecting homomorphism* ∂_n is equal to the composite

$$\pi_n(X,B) \to \pi_{n-1}B \to \pi_{n-1}(B,A).$$

5. Consider the map $h : \mathbb{R}^4 \to \mathbb{R}^3$ given by

$$h(x_1, x_2, x_3, x_4) = (x_1 x_3 + x_2 x_4, x_2 x_3 - x_1 x_4, x_1^2 + x_2^2 - x_3^2 - x_4^2).$$

- (a) Show that h restricts and corestricts to a map $h:S^3\to S^2.$ (This is the famous Hopf map.)
- (b) Show that the homotopy fiber P_h of h has the homotopy type of S^1 . Hint 3. Start by showing that $h^{-1}(v) \cong S^1$ for any $v \in S^2$.
- (c) Show that $\pi_n S^1 = \{0\}$ for all n > 1. Hint 4. Use the relation $\pi_n X \cong \pi_{n-1} \Omega X$.
- (d) It follows from the *Freudenthal suspension theorem* (to be proved later this semester) that

$$\pi_k S^n \cong \pi_{k+1} S^{n+1} \quad \forall k < 2n-1.$$

Use this isomorphism to prove that $\pi_k S^n = \{0\}$ for all $1 \le k < n$. Hint 5. Recall that Seifert-van Kampen implies that S^n is simply connected for all $n \ge 2$.

(e) Show that $\pi_2 S^2 \cong \mathbb{Z}$ (whence, by Freudenthal, $\pi_n S^n \cong \mathbb{Z}$ for all n) and that $\pi_3 S^2 \cong \mathbb{Z}$.

Hint 6. Use the long exact sequence in homotopy of h.