Série 2

28 octobre 2004

1.

Définition 1. On définit une relation d'équivalence $\sim sur \mathbb{R}^{n+1} \setminus \{0\}$ en posant $x \sim y$ si et seulement s'il existe $\lambda \in \mathbb{R}$ avec $\lambda \neq 0$ tel que $x = \lambda y$. Alors l'espace projectif réel de dimension \mathbf{n} est défini par $\mathbb{R}P^n := (\mathbb{R}^{n+1} \setminus \{0\}) / \sim$.

- (a) Déterminer $\mathbb{R}P^0$.
- (b) Montrer qu'il est possible de construire $\mathbb{R}P^n$ $(n \geq 1)$ en attachant une cellule de dimension n à $\mathbb{R}P^{n-1}$.
- (c) Montrer par récurrence sur n que $\mathbb{R}P^n$ admet une décomposition cellulaire avec une cellule en chaque dimension infèrieure ou égale à n.

2.

Définition 2. On définit une relation d'équivalence $\sim sur \mathbb{C}^{n+1}\setminus\{0\}$ en posant $x \sim y$ si et seulement s'il existe $\lambda \in \mathbb{C}$ avec $\lambda \neq 0$ tel que $x = \lambda y$. Alors l'espace projectif complexe de dimension \mathbf{n} est défini par $\mathbb{C}P^n := (\mathbb{C}^{n+1}\setminus\{0\})/\sim$.

- (a) Déterminer $\mathbb{C}P^0$.
- (b) Montrer qu'il est possible de construire $\mathbb{C}P^n$ $(n \geq 1)$ en attachant une cellule de dimension 2n à $\mathbb{C}P^{n-1}$.
- (c) Montrer par récurrence sur n que $\mathbb{C}P^n$ admet une décomposition cellulaire avec une cellule en chaque dimension paire infèrieure ou égale à 2n.
- 3.

Montrer que si (X, A) vérifie la propriété d'extension d'homotopie, alors $(W \cup_f X, W)$ vérifie cette même propriété, pour toute application continue $f: A \to W$.

4.

Supposons que (X, A) vérifie la propriété d'extension d'homotopie. Montrer que si $f \simeq g : A \to W$, alors $W \cup_f X \simeq W \cup_g X$.