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Introduction

Michael Hopkins taught a course (Math 231a) on algebraic topology at Harvard in Fall
2010. These are my “live-TEXed” notes from the course.

Conventions are as follows: Each lecture gets its own “chapter,” and appears in the
table of contents with the date. Some lectures are marked “section,” which means that
they were taken at a recitation session. The recitation sessions were taught by Eric
Larson.

These notes were typeset using LATEX 2.0. I used vim to take the notes. I ran the
Perl script latexmk in the background to keep the PDF output automatically updated
throughout class. The article class was used for the notes as a whole. The LATEX
package xymatrix was used to generate diagrams.

Of course, these notes are not a faithful representation of the course, either in the
mathematics itself or in the quotes, jokes, and philosophical musings; in particular, the
errors are my fault. By the same token, any virtues in the notes are to be credited to
the lecturer and not the scribe.

Please email corrections to amathew@college.harvard.edu.



Lecture 1 Notes on algebraic topology

Lecture 1
9/1

You might just write a song [for the final].

What is algebraic topology? Algebraic topology is studying things in topology (e.g.
spaces, things) by means of algebra. In [Professor Hopkins’s] first course on it, the
teacher said “algebra is easy, topology is hard.” The very first example of that is the
Euler characteristic.

Forgive me if you know all there is to know about the Euler characteristic.

The Euler characteristic assigns a number to each geometric object. Take a tetra-
hedron. It’s built out of faces, which look like triangles, and edges, and vertices. Call
the shape Σ so that

we feel like we are doing math

Euler had the idea of defining

χ(Σ) = V − E + F.

For the tetrahedron, we get 4 − 6 + 4 = 2. The point is that however you triangu-
late something, you always get the same number. Whenever you triangulate a two-
dimensional polyhedron (e.g. a cube, tetrahedron), you get two as the Euler char-
acteristic. A classic soccer ball for instance has twelve pentagons, fifteen hexagons,
seventy-five edges, and 75 edges, and fifty vertices. The V − E + F = 2.

“I’m pretty sure when Euler saw this, he was like “Double rainbow, all the way.””
Euler gave a classical proof of the Greek theorem about the regular platonic solids,

i.e. polyhedra where each face has the same shape, and where each vertex has the same
number of edges (i.e. the same number of edges meet at each point). An example of a
non-platonic solid would be a tetrahedron with another tetrahedron stuck underneath
it. This is because the condition on the vertices at each point is not met.

What are they? There is the tetrahedron, the cube, the octahedron, [Hopkins draws
pictures],

“This is the point where a lesser professor might quit drawing pictures.”
...dodecahedron, icosahedron.
“I was just born naturally with the ability to do these, it’s not that I spent a lot of

time doing this.”
If one writes down vertices, edges, and faces, one always finds that V −E +F = 2,

of course.
Euler, using this formula, was able to prove that there are at most five platonic

solids.

1.1 Theorem (Euler). There are ≤ 5 platonic solids.

Proof. We sketch the proof. Suppose F is the number of faces, and suppose each face
is an n-gon. Suppose we have k edges coming together at each point.
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Lecture 1 Notes on algebraic topology

1. The number of faces is F

2. The number of total edges is Fn/2

3. The number of vertices is Fn/k

We find

F − Fn

2
+
Fn

k
= 2

where n ≥ 3, k ≥ 3, and all these are integers. You can show that there are five
solutions in the integers. Just do a bit of casework. N

“It might be fun to think it yourself. Actually, it might be more fun to pretend you
did.”

What is this χ Euler characteristic an invariant of? All these polyhedra are home-
omorphic to the sphere. We could try other shapes. For instance, take a torus, and
mark it up in some way, to triangulate it. Regardless of how you triangulate it, you get
zero. For the torus with g handles, you get 2 − 2g for the Euler characteristic. Thus
the Euler characteristic distinguishes the surfaces.

So if you lived on a torus, you could find that out by dividing the place into pastures,
and then computing the Euler characteristic. Since the Euler characteristic is algebraic
and says something about topology, you could think of this about the beginning of
algebraic topology.

One of the things we will do in this class is talk about, as we asked, what the Euler
characteristic is an invariant of. Note that a convex body with a whisker still has the
same Euler characteristic two. Ideally we would make a definition that did not involve
triangulations, but just intrinsically associated a number to a space.

In this course, we shall study ways of attaching algebraic invariants to topological
spaces, namely abelian groups. We will study the so-called homology groups, which
are a fundamental tool for investigating spaces.

What do we mean by a space? We will often restrict to given useful classes of
spaces. In the next part, we will talk about this.

We have different models of topological spaces. For instance, spaces that have some
kind of combinatorial flavor. More precisely, simplicial complexes.

1.2 Definition. A simplicial complex consists of the following data:

1. A set K of vertices

2. A collection S of finite subsets of K, called simplices. Loosely speaking, a
simplex gets filled in. So it is required that if S ∈ S and S′ ⊂ S, we have S′ ∈ S.
The only other rule is that {v} ∈ S for each vertex v ∈ K. (Each vertex has to
get filled in.)

1.3 Definition. If S ∈ S has cardinality n, we call S an n-simplex.

So a two-simplex has two vertices, a three-simplex has three vertices, etc. This
is useful for many purposes. For instance, a computer can store this kind of data.
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Lecture 2 Notes on algebraic topology

Simplicial complexes are thus highly useful, and even enable you to attach a topological
space to things which by themselves have no topology.

“Simplicial complexes are triangle-xenophobic.” They don’t seem to like other
shapes. The platonic solids weren’t examples of simplicial complexes, e.g. the cube.
You could, however, get one by subdividing the square faces of a cube into triangles to
get a simplicial complex.

Euler’s formula applies, however, to spaces more general than simplicial complexes.
This is a notion that we will talk quite a bit more about in a month, much later into
the course, but it is a very important notion.

1.4 Definition (J.H.C. Whitehead in the 1950s). A CW-complex1 is defined as
follows. First, some notation:

en is the n-disk in Rn, the closed one {x ∈ Rn : ‖x‖ ≤ 1}. We call this an n-cell.
The boundary ∂en = Sn−1 is the sphere, consisting of vectors of length one.

In a CW-complex, you build a space out of cells. More precisely, it is a space X
that comes with a cell decomposition. There are a bunch of maps sα : enα → X (but
n varies, α in an indexing set) such that sα : Int(enα) → X is a homeomorphism and
X is covered bijectively (as a map of sets) by the images of the Int(enα) under sα. So
X is decomposed into the union of the interiors of these cells.

The two conditions we require:

1. The image of the boundary of an n-cell is contained in a finite union of cells of
dimension < n.

2. X has the weak topology of the sα. In other words, f : X → Y is continuous iff
f ◦ sα is for each α.

Lecture 2
9/3

CW Complexes
We will have another lecture on the different ways we think about space. Next

Wednesday, we will start on the algebraic side of algebraic topology, i.e. homology.
We go back to what we started last time.

§1 A basic construction

We describe how to “attach a cell.” Suppose you have a map from an n− 1 sphere to
a topological space X, i.e. f : Sn−1 → X. Then you can build the quotient

X ∪f Dn

which is the disjoint union XtDn with x ∈ Sn−1 identified with f(x) ∈ X (i.e. quotient
map).

1C. for closure finite and W. for weak topology. But it looks suspicious. “I’ll probably make all
kinds of editorial comments about general topology in the future.”
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Lecture 2 Notes on algebraic topology

More generally, if A ⊂ B is a subspace, given f : A→ X, we can define

X ∪f B = X tB/(a ∼ f(a)).

We shall write en = Int(Dn). This is in contrast to the previous notation we used
in the previous lecture (i.e., first lecture).

§2 Definition

A CW-structure on a space X is a filtration

X0 ⊂ X1 ⊂ X2 ⊂ . . .

such that

1. X =
⋃
Xi.

2. X0 is a discrete set.

3. Xn is gotten from Xn−1 by attaching a bunch of n-cells,

Xn = Xn−1 ∪tfα tDn
α.

Here the fα : Sn−1 → Xn−1.

4. X has the weak topology of the {Xn}, i.e. a map out of X is continuous if and
only if the restrictions to Xn are continuous.

Xn is called the n-skeleton of X.
There are many other ways of saying this. You can think of this as a decomposition.

Let enα = Int(Dn
α). Then as a set X is the disjoint union X = tenα; each of these goes

in homeomorphically to the image, the boundaries don’t have to.
We’re going to meet a bunch of examples of these guys.
You want to think about this as a manufacturing process.
Consider a torus T. We want to define a CW-structure on it. This was described

in class; I can’t draw it here.

It’s as if you glued two telephones today and made a doughnut for breakfast.

2.1 Theorem. Any manifold is a CW-complex.

Proof omitted.

2.2 Example. RPn is a CW-complex. The filtration is

RP0 ⊂ RP1 ⊂ RP2 ⊂ · · · ⊂ RPn.

This is because to get RPn from RPn−1, attach the upper hemisphere and glue the
boundary to RPn−1. This is a good nontrivial example of a CW complex.

2.3 Example. Riemann spheres are obtained from polygons with sides identified suit-
ably. This, however, is a CW-complex construction. The endpoints of the polygons are
the 0-cells; the edges are the 1-cells; the interior is a 2-cell.

8



Lecture 2 Notes on algebraic topology

§3 Simplicial complexes

We described simplicial complexes last time, but we need to know how to get a space
from it.

Let S be a finite set. Let ∆S ∈ RS be such that each xs, s ∈ S lies in [0, 1] and∑
s∈S xs = 1. This is a simplex, and for |S| = 2 is a line, for instance.
We have done this for an arbitrary set S, without an ordering of the vertices S.

Right now, we have no way of assigning an orientation on the faces of this simplex, for
instance; this is just a space associated to the set S.

Given a map S → S′, there is a linear map

∆S → ∆S′ .

This is defined in a natural manner. So a map of the vertices yields a map of simplices.
Here is a useful notation. We can define, if x ∈ ∆s, we can think of x as a sum of

its coordinates xs times standard basis vectors es, s ∈ S. Then this map ∆S → ∆S′

sends es → es′ if s→ s′.
Given a simplicial complex (K,S) for K a set and S a collection of finite subsets

(called simplices), we define:

2.4 Definition. The geometric realization of K is the union⋃
S∈S

∆S ⊂ ∆K .

So this was kind of like Baby Bear? I don’t want to be baby bear.

2.5 Definition. We write ∆n for the standard n-simplex; this is

∆{0,1,...,n} ⊂ Rn+1

and has basis vectors e0, . . . , en.
There is a difference between this and ∆S for S a random set. ∆n+1 has an ordering

on the basis vectors because the vertex set {0, . . . , n} is ordered. This is an important
point.

One of the consequences of this is that the definition of the chain complex of a
simplicial complex is more complicated.

Consider the torus. This is the same as a square with opposite edges identified.

Think space invaders.

This is not a simplicial complex. If you cut it on the diagonal edge, it is not a
simplicial complex, because you still have only one vertex. You can triangulate the
torus, however, and make it into a simplicial complex with a bunch of triangles. The
point is that this is inconvenient and complicated; the CW structure was much simpler.
However, the CW complex cannot be stored on the computer.
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§4 ∆-complex

There is a nice hybrid of the two notions.

2.6 Definition. A ∆-complex structure on a space X consists of a collection of maps
from standard complexes Snα : ∆n → X (which are homeomorphisms when restricted
to the interior Int(∆n)) with the property that Snα restricted to a face is another one of
these maps. Finally, we require that a subset U ⊂ X is open if and only if the inverse
images S−1

α (U) ⊂ ∆n is open for all n.

Let us explain what a face is. Suppose I have a set S and s ∈ S. Then the s-face
δs∆

S of ∆S is ∆S−{s} ⊂ ∆S ; if there is a simplex on {a, b, c}, then the a-face is the
line [b.c] opposite a. Note that the ith face δi∆

n = ∆{1,2,...,i−1,i+1,...,n}, which has a
canonical isomorphism with ∆n−1 because of the ordering.

2.7 Example. There is a nice ∆-complex structure on the torus T when it is viewed
as a square with opposite sides identified. There is only one zero-simplex S0, two 1-
simplices (because there are two edges modulo identification), and one 2-simplex. The
same works for arbitrary Riemann surface structures via n-gons with sides identified;
they, too, have a ∆-complex structure.

2.8 Definition. A combinatorial ∆-complex2 consists of a set Xn, n ∈ N (corre-
sponding to the index set for the maps Sαn : ∆n → X for a ∆-complex) together with
i-th face maps

δi : Xn → Xn−1

(corresponding to restriction to the ith face). We have one more restriction based on
how the face maps commute.

There is a relation we need to work out. For instance, didj has to be something
like djdi or dj−1di. There is a better and more elegant way to state it, though: for
every order-preserving inclusion [n] → [m] (where [n] = {0, 1, . . . , n}), there is a map
Xm → Xn such that if you have two of these,

[a]→ [b]→ [c]

then the composition Xc → Xb → Xa is the same as Xc → Xa from [a] → [c]. In
particular, a combinatorial ∆-complex is a contravariant functor on the category of
finite ordered sets.

We will also need to spend time in the course with the following important notion:

2.9 Definition. A simplicial set is a collection of sets Xn, n ∈ N such that for every
order-preserving map (not necessarily an inclusion) [n]→ [m], there is a map Xm → Xn

such that the obvious diagram commutes when there is a triple [l]→ [m]→ [n].

We’ll do some more with this, especially in the second semester. You can do all of
algebraic topology with simplicial sets instead of topological spaces.

2This is a notion being tried so early as an experiment.
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Lecture 3
9/8

We’ve spent a while talking about different models for spaces:

1. A topological space

2. A simplicial complex

3. A ∆-complex. These were defined earlier, and include for instance polygons with
edges identified to get Riemann surfaces of arbitrary genus. The point of a ∆-
complex is that there is potentially collapsing on the boundary. Moreover, there
is an ordering on the vertices of each specified simplex.

4. CW-complexes.

5. Simplicial sets.

We would like to attach algebraic things to topological spaces. We will now explain
what sorts of algebraic objects we will attach.

3.1 Definition. A chain complex is a collection of abelian groups C0, C1, . . . with
morphisms

C0 ←d C1 ←d C2 ←d . . . .

The key condition required is

d2 = 0

All the morphisms are denoted by d. In fact, there are variants of the definition:
for instance, one may define a complex of R-modules. Here the differential would be
required to be an R-homomorphism.

One can make another variant where the complex goes in the negative direction as
well. Mostly, we will just be considered with this type of chain complex. There are
some invariants one extracts from a chain complex known as homology.

We will often denote a chain complex by (C∗, d), or even C∗, where d stands for the
differential.

3.2 Definition. The homology of (C∗, d), written as Hn(C), is

ker(d : Cn → Cn+1)/Im(d : Cn−1 → Cn).

This makes sense because d2 = 0.

We will end up associating to a space a chain complex, and we will be interested in
the homology of this.

We give an unrelated example of a chain complex.

3.3 Example. Let K be a number field. There is a map K∗ → div(K), where div(K)
is the free abelian group on the set of primes, i.e. the group of nonzero primes. The
cokernel is the divisor class group; the kernel is the unit group. This can be viewed as
a chain complex with zeros everywhere else.

11
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3.4 Example. Consider Cn = Z for all n; and d = 2 or d = 0 alternatively. So
d : Cn → Cn+1 is multiplication by 2 for n even; 0 for n odd. The homology groups
are Z at n = 0 and then, alternatively, Z/2 and 0.

Question. Find a chain complex C∗ such that H5(C) = Z2⊕Z4 and all the others are
zero.

One example would be to place the Z2⊕Z4 in dimension five and zeros everywhere
else. If we required each of the groups to be free abelian, we could do this as well with
Z2 in dimensions four and five, and zero everywhere else.

Question. Suppose R = Z2[ε]/(ε2). Find a chain complex of free R-modules such that
H5(C∗) = R/(ε) = Z2, and all the others zero.

Nobody in the class responded. I was a student once, and I know how much
this is torture—and now I just can’t resist doing it.

We can put zeros in C∗ up until we get to five, and then put C5 = R. We put
C6 = R and C6 → C5 be multiplication by ε. This achieves the required homology
in degree five and below. However, ker(C6 → C5) is nonzero, so we need something
from degree C7 to come down and kill that kernel. We have C7 = R and multiplication
by ε to take up ker(C6 → C5). We have to keep putting each of them as R with
multiplication by ε all the way up.

We’re going to do much more with chain complexes in the next lecture or so. Now,
we will make a chain complex out of a space.

§1 Chain complexes from ∆-complexes

Let X be a space equipped with a structure of a ∆-complex. That’s a collection of
maps snα : ∆n → X such that various things happen. The most important thing is that
the restriction to each face leaves another one in the list.

Here α runs through some index set A, and n through a subset of Z.

3.5 Definition. The simplicial chain complex of X is defined as follows. The n-
chains are the free-abelian group on the set {snα : ∆n → X}. So this is free abelian on
the n-simplexes in the delta-structure. We write this as C∆

∗ (X).
We next need to define d. For an n-simplex map snα, we write:

dsnα =
∑

(−1)isnα|∂i∆n .

The simplicial homology groups H∆
∗ (X) are the homology groups of this space.

3.6 Example. Consider the torus with the ∆-structure discussed earlier, namely that
with a square with opposing sides identified. Let the vertices be 0, 1, 2, 3. The square
is cut into two triangles, which are simplexes in the ∆-complex. There are two 2-
simplices [0, 1, 2], [0, 2, 3]. The 1-simplices are [0, 1] = [2, 3], [1, 2] = [0, 3], [0, 2]. There
is one zero-simplex [0] = [1] = [2] = [3]. So C∆

0 (X) = Z. C∆
1 (X) = Z ⊕ Z ⊕ Z. Also,

C∆
2 (X) = Z ⊕ Z. It is easy to compute the boundary maps explicitly of these guys,

though I am having trouble writing it down fast enough.
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The map C∆
1 (X)→ C∆

0 (X) is the zero map since all the vertices are the same. The
first homology group is just the cokernel of C∆

2 (X) → C∆
1 (X). The differential from

C2 can be written in matrix form.
FIX THIS AS AN EXERCISE

It’s not obvious at all, though we will prove this eventually, that this is independent
of the particular ∆-structure, though this is true.

Question. What is the simplicial homology of the genus two surface, a polygon with
opposite sides identified? You should get Z4 in dimension one, Z in dimension two,
and Z in dimension zero.

Let us now jump to the homology of more general spaces, where we will use all
maps from a simplex into a space; this is daring, since there are a lot of such maps.

3.7 Definition. Let X be a space. The singular chain complex C∗(X) is defined
so that Cn(X) is the free abelian group on the set of all maps ∆n → X. You don’t
have special ones as in the ∆-complex; you have a huge set.

The differential d sends s : ∆n → X to
∑

(−1)is|∂i∆n . The singular homology is
the homology of the singular chain complex.

This has a lot of miraculous properties, and we will eventually get lots of practice
calculating these homology groups. One theorem we will prove, but not quite in the
way we’re studying it:

3.8 Theorem. If X is a ∆-complex, the natural inclusion map C∆
n (X) → Cn(X)

(leading to a map of chain complexes) induces an isomorphism on homology.

In particular, the homology groups are independent of the ∆-structure.

Question. Suppose instead of a ∆-complex, one had a simplicial complex—how do
you get a chain complex?

Lecture 4
9-10

Last time we defined the notion of a chain complex and talked about the homology
of one. We also discussed the simplicial homology H∆

∗ (X) of a ∆-complex as well
as the singular homology H∗(X) of an arbitrary topological space. Recall that this
last thing is the homology of the chain complex C∗(X), where C∗(X) is the complex
whose n-th level is free on the maps ∆n → X, and the differential is the alternating
sum.

Suppose X is the standard n-simplex with the usual ∆-structure. Namely, the
k-simplices are just the order-preserving maps {0, 1, . . . , k} → {0, . . . , n}. This is a
convenient combinatorial way of writing the ∆-structure. Let us consider the complex
C∆
∗ (∆n).

4.1 Example. When n = 0, we have Z in dimension zero and zero everywhere else.
The homology is thus zero in dimension zero, zero everywhere else. This is also true
for singular homology.

13
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4.2 Example. When n = 1, the simplex is a line connecting two points. The zero-
group (free on the 0-simplices) are the free abelian group on the vertices [0], [1]. The
1-group is the free abelian group on [0, 1]. The boundary map sends [0, 1] → [0]− [1].
The first homology group is thus Z⊕Z with the first factor identified with the second,
hence is isomorphic to Z.

4.3 Example. When n = 2, we have a diagram

Z {[012]} → Z {[01][12][02]} → Z {[0][1][2]} .

This is the ∆-chain complex. The cokernel at the zeroth level has the three generators
[0], [1], [2] identified so H∆

0 (X) = Z.
Consider the kernel at the first level. A typical element of C∆

1 is given by a formal
sum

a[01] + b[02] + c[12].

The boundary map sends this to

−(a+ b)[0] + (a− c)[1] + (b+ c)[2].

For this to be zero, a = c = −b. In other words, this (a, b, c) has to look like (a,−a, a).
The kernel is generated by (1,−1, 1), which corresponds to the image of d([012]). In
particular,

H1(X) = 0.

It’s easy to see that any 1-chain (i.e. element of C∆
1 (X)) killed by d must go all the

way around the boundary, in a loose sense.

4.4 Definition. In a chain complex C∗, we define Zn = ker(d : Cn → Cn+1); it is
called the group of n-cycles.3. The image Bn = Im(d : Bn+1 → Bn) is called the
group of n-boundaries.

We know that
Zn/Bn ' Hn(C∗).

We now move into some general properties about singular homology, which we
will see applies to simplicial homology.

1. Singular homology is functorial. Suppose f : X → Y is continuous. Then
there is a natural map C∗(X) → C∗(Y ) sending ∆n → X to the composite
∆n → X → Y . This induces maps on homology.

In particular, there are maps f∗ : H∗(X)→ H∗(Y ).

If f is the identity map, so is the map on homology. The other interesting property
is that a commutative diagram

X //

  A
AA

AA
AA

Y

��
Z

3The name is based on the remark at the end of the example
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leads to a commutative diagram of homology

H∗(X) //

$$J
JJJJJJJJ
H∗(Y )

��
H∗(Z)

These are essentially formal properties, and explain the functoriality. The functo-
riality is immediate from the definitions, since it is essentially all about composing
simplices.

2. Homotopy invariance. This is definitely not a formal property.

4.5 Proposition. Suppose f, g : X → Y are homotopic; this means there is
H : X × [0, 1] → Y such that H(x, 0) = f(x), H(x, 1) = g(x). Then the induced
maps in homology f∗, g∗ : H∗(X)→ H∗(Y ) are equal.

We will prove this below.

In particular,

4.6 Corollary. If f : X → Y is a homotopy equivalence, then f∗ : H∗(X) →
H∗(Y ) is an isomorphism.

Proof. This is evident. Suppose g : Y → X is a homotopy inverse. Then fg, gf
are homotopic to the identities; so (fg)∗ = f∗g∗, (gf)∗ = g∗f∗ are equal to the
identity on the appropriate homology groups. So f∗, g∗ are inverses. N

4.7 Example. ∆n and a point ∆0 are homotopy equivalent. This is because ∆n is
contractible (given a vertex v0, push any vector v along the line with v, v0 towards v0

and deform ∆n into a point). So the homology is the same. In particular, the singular
homology of ∆n is Z in degree zero and zero elsewhere.

We now begin our descent towards the proof of homotopy invariance. First, we
begin with the notion of chain homotopy.

4.8 Definition. Suppose C∗, D∗ are chain complexes and f, g : C∗ → D∗ are mor-
phisms. A chain homotopy between f, g is a collection of maps

h : Cn → Dn+1

such that
dh+ hd = g − f.

15
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Let’s draw a diagram
...

��

...

��
C2

f,g //

��

D2

��
C1

h
==||||||||

��

f,g // D1

��
C0

h
==|||||||| f,g // D0

Now we can do this recursively. Suppose h is defined in dimensions less than n. Suppose
c ∈ Cn. Then we want

(f − g)c = dhc+ hdc,

i.e.
d(hc) = (f − g)c− h(dc)

where the right side is all determined. So to define h in dimension n, we have to pick it
as an element hc (and make c→ hc such that its boundary is something pre-determined.

4.9 Lemma. Suppose f, g chain homotopic; then f∗ = g∗ : H∗(C)→ H∗(D).

Proof. If you have a cycle in Cn, then the difference f − g on that will differ by a
boundary. So f, g induce the same maps in homology. In detail, if z ∈ Zn ⊂ Cn is a
cycle, then

f(z)− g(z) = dh(z) + hd(z) = dh(z) ∈ Bn.

So the residue classes of f(z), g(z) in Hn(C) are equal. N

We will now prove the theorem that homology is homotopy invariant.

Proof. To prove this, we will show that if f, g : X → Y are homotopic. We want to
prove that they induce the same map in homology. In particular,

f∗ = g∗ : H∗(X)→ H∗(Y ).

We will show that the induced maps by f, g

C∗(X)→ C∗(Y )

are chain homotopic. This will imply the claim. We will write down a formula, but
first we will mess around to show something important.

We can reduce this to a specific situation. Namely, it is enough to assume Y =
X × [0, 1] and f(x) = (x, 0) and g(x) = (x, 1). The reason is that there is a diagram

X
f,g

$$IIIIIIIIIII
(x,1)

(x,0)
// X × [0, 1]

H

��
Y

16
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So if the two maps H∗(X)→ H∗(X× [0, 1]) are the same, then the two maps H∗(X)→
H∗(Y ) are the same by commutativity of the diagram. The point is that we can use
functoriality to reduce to universal cases. This is a fundamental point. Later, we will
study the theory of categories and this abstract nonsense will get even more fun.

The second reduction is as follows. Namely, we will try to write a chain homotopy
between the two maps f, g : C∗(X)→ C∗(X × [0, 1]) that works for every X and works
for every space. Suppose we have a typical chain

∑
sα where each sα : ∆n → X. We

will try to find a “universal formula” hc such that

dhc+ hdc = fc− gc.

Since this is going to be linear, we need only define h on sα. I claim:

By naturality, it is enough to define hs where s ∈ Cn(∆n) is the identity
map such that hs ∈ Cn+1(∆n × [0, 1]).

This is because any sα : ∆n → X, we get a map

sα : C∗(∆
n)→ C∗(X)

that sends s to sα. If we define hs, we map this under sα to define hsα. I was messing
up the diagrams that I was TeXxing up.

N

We should do the general formula for how to define hs for s the standard (identity)
n-simplex. However, there’s no time. Will do this next class; now for an example.

4.10 Example. Consider ∆0 and s : ∆0 → ∆0. Then we have that ∆0× [0, 1] = [0, 1].
The 1-simplex ∆1 → ∆0 × [0, 1] which is the obvious homeomorphism has boundary
equal to the difference of the two endpoints. So we can send s to this 1-simplex via h
to get the chain homotopy.

Lecture 5
9/13

§1 Completion of the proof of homotopy invariance

We’re in the middle of something a little technical, but just bear with us. It’s more
important to understand the style of the argument, since you will see this many more
times. It’s kind of like when you see δ, ε arguments in calculus for the first time; later
on they make much more sense. The tools made with this material will be useful.

So, recap: We defined a thing called singular homology. We were in the middle
of showing that it was homotopy invariant. In other words, if we had a map F :
X × [0, 1] → Y such that F (x, 0) = f(x), F (x, 1) = g(x), then the induced maps on
homology

f∗, g∗ : H∗(X)→ H∗(Y )

are the same.

17
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We introduced this notion last time of a chain homotopy, which was a purely
algebraic notion. Suppose one has two maps of chain complexes s, t : C∗ → D∗; a chain
homotopy is a map h : C∗ → D∗+1 (shifting the degree by 1) such that

dh+ hd = t− s,

implying that t∗, s∗ : H∗(C)→ H∗(D).
We wanted to show that homotopic maps of topological spaces induce chain-homotopic

maps complexes. Today, we will give an explicit construction of the chain homotopy.
Consider the standard simplex ∆n; label its vertices e0, . . . , en. Consider the prod-

uct ∆n × I, the bottom vertices of which we label v0, . . . , vn, and the top vertices of
which we label w0, . . . , wn. We will divide the product ∆n×I into a simplicial complex.
In particular, we decompose this into

[v0w0w1w2 . . . wn], [v0v1w2 . . . wn], . . . .

The geometric idea is to go along the v’s for a while, and then make a jump up to the
w’s and stay there. This forms a simplicial decomposition of the prism into a simplicial
complex.

Now let us give a chain homotopy h between the maps C∗(X)→ C∗(X×I) induced
by the two inclusions X ⇒ X×[0, 1]. This will be enough to prove homotopy invariance,
by what has been discussed in the last lecture.

Let σ : ∆n → X be a singular n-simplex. We have to say what h(σ) is. We do so
as follows:

hσ =
∑
i

(−1)i(σ × 1)∗[v0 . . . viwi . . . wn].

First, to make sense of what the heck this is. Now

[v0 . . . viwi . . . wn]

is a n + 1-simplex in ∆n × [0, 1]. This when composed with σ × 1 : ∆n × I → X × I
gives a n+ 1 simplex in X × [0, 1]. The alternating sum of these is hσ.

It can be checked that
dh+ hd = (i1)∗ − (i0)∗

for i0, i1 : X ⇒ X × I. We leave the proof, which is computation, to the reader!
Despite the fact that we only sketched the proof, we will regard that it is now

completely proved that homology is a homotopy invariant.

§2 Excision

We will lay the groundwork for this today, and state the main technical result. Excision,
together with homotopy invariance, lets you compute singular homology. We will start
by sketching the heart of this.

Philosophy. Homology can be calculated by only using tiny simplices. “Tiny” will be
defined in the sequel.

18
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Here is a mechanism of shrinking simplices. This is called barycentric subdivi-
sion. We first describe it intuitively.

1. For a 1-simplex, divide into halves.

2. For an n-simplex, subdivide the boundary. Then take the point in the middle of
the n-simplex and join it to every vertex on the boundary (in the subdivision).

We now give a formula for barycentric subdivision, which will apply to any linear
simplex. If v0, . . . , vn ∈ RM , we will write

[v0 . . . vn]

for the n-simplex spanned by them, as usual.4 This is the collection of sums
∑
tivi

where
∑
ti = 1 and each ti ≥ 0.

5.1 Definition. The barycenter is the point

1

n+ 1

∑
vi ∈ [v0 . . . vn].

This is where all the coefficients ti are the same.

5.2 Definition. The vertices of the barycentric subdivision of an n-simplex are the
barycenters of the sub-simplices. (In particular, to each subset of {v0, . . . , vn} there is
a vertex.)

A simplex in the barycentric subdivision is a collection [b0 . . . bn] where b0 is the
barycenter of [v0 . . . vn], b1 a barycenter of an n − 1-subsimplex, b2 a barycenter of a
n − 2-subsimplex of the n − 1-simplex and bn a 0-simplex. So the simplices are in
bijection with the descending sequences of subsimplices of [v0 . . . vn].

We now return to the philosophy that homology depends only on “small” simplices.

5.3 Definition. The diameter of a simplex [v0 . . . vn] is the maximal distance between
any two points in it, which is (as one can easily show) supi,j |vi− vj |. (The points that
are the furthest apart are the vertices.)

It is clear that when one does the barycentric subdivision, one gets maps out of
simplices which are not the regular n-simplex—when you subdivide an equilateral tri-
angle, you don’t get equilateral triangles. In fact, they look pretty weird. That’s ok,
but we want to assure ourselves that they are at least shrinking.

5.4 Lemma. The diameter of each simplex of the barycentric subdivision of [v0 . . . vn]
is at most n

n+1diam[v0 . . . vn].

Proof. Left to the reader—straightforward. N

Notice that barycentric subdivision need not shrink the simplex a whole lot, but
if you keep iterating it, you eventually will get only really small simplices, because
n
n+1 < 1.

4Note that all the vi may be identical!
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“It would be kind of cool to have that lemma the same as that one as that
one, but only the last one’s right.”

Here’s where we’re headed. We are going to define a subdivision operator S

S : C∗(X)→ C∗(X)

on the singular chains of any topological space X obtained by restricting each σ : ∆n →
X to the sum of simplices in the barycentric subdivision of ∆n. We’re going to show

1. S is a chain map, namely it commutes with the differential d.

2. S is chain homotopic to the identity.

Thus Sk for any k is chain-homotopic to the identity. In particular, this gives
some substance to the philosophy that homology can be computed in terms of small
simplices. But this is the technical heart of the approach.

The current plan for the course is not to go into the technical details, but to work
on using excision rather than delving into the proofs of the two items above.

Lecture 6
[Section] 9/13

§1 A discussion of naturality

We will go over in more detail the reduction made before in lecture 4. The main point
was in the proof of

6.1 Theorem. If f, g : X → Y are homotopic, then the maps induced on homology
are the same. More precisely, the maps

C∗(X)→ C∗(Y )

are chain homotopic.

The definition of chain homotopy has already been given in these notes, and we do
not review it here.

Instead of going right to this problem, let’s look at a simpler example of a problem
like this.

Problem (Simpler problem). For every abelian group G, suppose given a map tG

tG : G→ G

such that for any map g : G→ G′, we have a commutative diagram

G
tG //

��

G

��
G′

tG′ // G′

.
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In other words, we want an endomorphism of the identity functor.
To solve this, we will look at a “universal” example. Consider the maps Z→ Z; the

only maps are multiplication by a. Suppose that our map tZ is multiplication by n.
I claim that tG is multiplication by n for any n. Indeed, pick g ∈ G for a group G.
For the Z→ G sending 1 to g, consider the diagram

Z

��

// Z

��
G // G

The commutativity and the fact that the horizontal row is multiplication by n implies
that g must be sent to ng.

Anyway, back to the original problem. For any pair f, g : X ⇒ Y which are
homotopic, we want to construct the chain homotopy between the maps on the chain
complexes. It would be cool to make this natural, though. So for every commutative
diagram

X

��

f

g
// Y

��
X ′

f ′

g′
// Y ′

with the maps f, g and f ′, g′ homotopic, then the chain homotopies

C∗(X)

��

h // C∗(Y )

��
C∗(X

′)
h // C∗(Y

′)

make a commutative diagram. To do this, we look at the universal case. This universal
case consists of the two maps

i0, i1 : X ⇒ X × [0, 1].

In this situation, for any pair X ⇒ Y of homotopic maps, we can split it into

X ⇒ X × [0, 1]→ Y.

So if we define our chain homotopies for the case of i0, i1, we can compose it with
additional things to define the homotopies for anything.

Next, Hopkins reduced to the case for X = ∆n. This is because any singular n-
simplex ∆n → X can be expressed as the identity simplex ∆n → ∆n composed with
some map ∆n → X. In particular, we have a diagram (commutative by the naturality
insistence)

C∗(∆
n)

��

h// C∗+1(∆n × [0, 1])

��
C∗(X)

h // C∗+1(X × [0, 1])
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and if we have defined the top maps in every case, the bottom maps must be determined
(since the maps ∆n → X lead to all the n-simplices). This is why we could make all
those reductions.

Lecture 7
9/15

§1 Excision

Last time we sketched something which was a little bit grungy. We’re trying to put a lit-
tle substance to the philosophical comment that Homology depends only on small
chains. We’re going to prove something that gives a real mathematical statement to
this, and prove some of the consequences.

Here is the first theorem that we want to prove.
Suppose X is a space and A = {Uα} is a collection of subsets such that Int(Uα)

covers X. In practice, we always want the Uα to be open anyway. We want to consider
now, instead of the whole singular chain complex, the subgroup CA

n (X), which is the
free abelian group on the set of maps σ : ∆n → X such that σ(∆n) is contained in
the interior of some Uα. We are looking at simplices which are contained in one of the
interiors.

Then CA
∗ (X) is a chain complex since if a chain sits inside one of the Uα, so does

its boundary. It is a subcomplex of C∗(X).

7.1 Theorem. The inclusion CA
∗ (X)→ C∗(X) induces isomorphisms on homology.

In particular, when computing the homology, we can just restrict to small chains.
We will prove this today while using the general approach of barycentric subdivision.
You can in fact show that the inclusion induces a chain homotopy equivalence, though
we won’t do this.

Recall first the subdivision operator S : C∗(X) → C∗(X) which sends a chain
σ : ∆n → X to the sum

∑
(±)σ|∆n over σ being restricted to the various simplices in

the barycentric subdivision. The hard thing is to work out the appropriate signs. The
signs are forced on you, and they are necessary to make it a chain map.

1. S is a map of chain complexes, i.e. it commutes with the boundary: Sd = dS.

2. S is chain homotopic to the identity. In other words, there are maps h : Cn →
Cn+1 such that

dh+ hd = 1C .

Using this, we will prove the theorem.
We will now use a simple fact.

7.2 Exercise. Chain homotopy is an equivalence relation on Hom(C∗, D∗) for C∗, D∗
complexes.
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It now follows that since S ∼ 1 (we use ∼ to denote chain homotopy), we have
S2 ∼ S ∼ 1, and by induction

Sn ∼ 1

for all n ∈ Z≥0.

Proof. We start by showing the map is onto.
Suppose c ∈ Hn(X). Choose a cycle z ∈ Cn(X) representing c; i.e., z maps to c in

the reduction map Zn(X)/Bn(X)→ Hn(X). We apply this operator S to z.
Write z =

∑
(±)σi. Each σi : ∆n → X is a collection of maps. Since the Int(Uα)

cover X, the inverse images σ−1
i (Int(Uα)) cover ∆n for each i. So we have a finite

collection of covers of ∆n.
Now choose m so large such that (n/n+ 1)m is smaller than the Lebesgue number

(see below) of each covering σ−1(Int(Uα)). For all i, it follows that σi restricted to each
simplex in the m-th barycentric subdivision—which has diameter at most (n/n+ 1)m

and consequently is contained in some σ−1
i (Uα)—belongs to CA

n (X), because the image
lies in some Uα. In particular, when you subdivide the simplex into a lot of little
simplices, each little piece has image lying in one of the Int(Uα).

In particular, Sm(z) ∈ CA
n (X). There exists h such that dh+hd = Sm− 1, though,

by chain homotopy. This means that

Smz − z = dh(z) + hd(z) = dh(z)

so that Smz, z have the same image in Hm(X), i.e. are in the same homology class.
Thus the map CA

∗ → C∗ induces surjections on homology since Sm is in CA
n (X).

Now we show that the map induces injective maps on homology. Suppose we
have a class c ∈ Hn(CA

∗ (X)) which goes to zero in Hn(X); we have to show that
c is itself zero. Choose a cycle z ∈ CA

n (X) representing c. Then z = dw for some
w ∈ Cn+1(X) because z is a boundary in the full chain complex, but we don’t know
that w ∈ CA

n+1(X).
By the same discussion, for m really large, we have Smw ∈ CA

n+1(X). It follows
that d(Smw) = Smdw = Smz. since S is a chain map. There is a remark we need to
make:

1. S induces a map CA
n (X) → CA

n (X). This is obvious; when you subdivide small
chains, you get small chains.

2. This map is chain-homotopic to the identity. This isn’t as obvious. The chain
homotopy preserves the subcomplex. We won’t prove this, though.

Anyway, so the homology classes of Smz, z in H(CA
∗ (X)) are the same. It follows

that the homology class of Smz in this homology group is zero because Smz = d(Smw),
and Smw is contained in CA

∗ (X) for some m. So z maps to zero homology in this
complex too, and we have proved injectivity. The proof the theorem is now complete.

N

I should have asked this half an hour ago, but can you people in the back
read?
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Remark. Suppose T is a compact metric space and the Vα cover T and are open.
Then there exists ε > 0 such that points x ∈ T , the ball of radius ε, namely Bε(x), is
contained in some Vα. This is a theorem about compact metric spaces. Such a number
ε is called a Lebesgue number of T .

§2 Some algebra

We now switch gears to another thing.

7.3 Definition. A short exact sequence of abelian groups

0→A f→ B
g→ C → 0

is called exact if f is injective, g is surjective, and ker g = Imf .
More generally, a lot sequence of abelian groups

· · · → Cn+1 → Cn → Cn−1 → . . .

is exact if the kernel of one map is the image of the previous one.

7.4 Definition. A short exact sequence of chain complexes

0→ C ′∗ → C∗ → C ′′∗ → 0

is a sequence of chain complexes and chain maps such that for each n,

0→ C ′n → Cn → C ′′n → 0

is a short exact sequence.

The idea is that if you have a short exact sequence and you know two of the three
terms in the sequence, then you know the third—in some sense, at least. We will
find several different ways of making this precise. This is a philosophy, and it is only
approximately true.

7.5 Example. The sequence

0→ Z2 → Z2 ⊕ Z2 → Z2 → 0

is short exact (obvious maps) as is

0→ Z2 → Z4 → Z2 → 0.

This shows that the philosophical statement above is not mathematically airtight as it
is.

7.6 Example. Suppose T = T1 ∪ T2 as sets (discrete). Then we can take the free
abelian group ZT1 and the free abelian group ZT2. There is a surjective map

ZT1 ⊕ ZT2 → Z(T1 ∪ T2)

but it is not an isomorphism; some of the elements got counted twice, namely the ones
in T1, T2. Namely, the kernel of this map is isomorphic to Z(T1 ∩ T2) where the map
Z(T1 ∩ T2) → ZT1 ⊕ ZT2 sends t ∈ T1 ∩ T2 to (t,−t) ∈ ZT1 ⊕ ZT2. In particular, we
have a short exact sequence

0→ Z(T1 ∩ T2)→ ZT1 ⊕ ZT2 → Z(T1 ∪ T2)→ 0.
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Let’s go back to the case when X is a space and the interiors of two subsets U1, U2

cover X. We consider the set of all n-chains. By the above example, we have a map
(for each n)

Cn(U1)⊕ Cn(U2)→ CA
n (X)→ 0

where A = {U1, U2}. The kernel of this is

Cn(U1 ∩ U2).

This follows at once from the previous example. Indeed, we take T1 as the set of
simplices in U1, T2 as the set of simplices in U2, so then T1 ∪ T2 is a basis for CA

n (X).
There is thus a short exact sequence for each n:

0→ Cn(U1 ∩ U2)→ Cn(U1)⊕ Cn(U2)→ CA
n (X)→ 0

which leads to a short exact sequence of chain complexes

0→ C∗(U1 ∩ U2)→ C∗(U1)⊕ C∗(U2)→ CA
∗ (X)→ 0.

As we will see next time, this leads to an important relationship between the homology
of U1 ∩ U2, the homology of U1, that of U2, and the homology of CA

∗ (X) (which we
just proved is the same as the homology of X). This relationship is what will help you
make tons and tons of calculations.

This is yet another expression of the philosophy that homology depends on small
simplices.

Lecture 8
9/17

This lecture was given by Eric Wofsey.
The goal for today is to prove:

8.1 Theorem. If n 6= m, then Rn is not homeomorphic to Rm.

Ad hoc methods suffice to show that R1 is not homeomorphic to R2 because R1− 0
is not homeomorphic to R2 − 0 (since one is connected and one isn’t).

In the previous lecture, Hopkins proved that if A is an open cover of a space X,
and CA

∗ the complex of singular n-chains lying inside one of the sets of the open cover,
then the inclusion CA

∗ (X) → C∗(X) induces isomorphisms on homology. Moreover, it
is even a chain homotopy equivalence.

We will consider today the case when A consists of only two sets U, V . We’d like
to understand what CA

∗ (X) looks like. First, let’s write some maps:

U
k

  A
AA

AA
AA

U ∩ V
j

##G
GG

GG
GG

GG

i

;;wwwwwwwww
X

V

l
>>}}}}}}}
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There is a surjection
C∗(U)⊕ C∗(V )→ CA

∗ (X)

by sending a pair of simplices into their inclusions in X. Thus, this map can be written
as

C∗(U)⊕ C∗(V )
(k,l)→ CA

∗ (X).

This map isn’t injective, though. If α is a chain in the intersection, we can consider it
as either a chain of U and a chain of V . The pair (α,−α) ∈ C∗(U)⊕ C∗(V ) (or more
precisely, the push-forwards of these under the inclusion maps) goes to zero. It is also
easy to see that this is the only way something in C∗(U)⊕C∗(V ) can get killed. More
precisely, we have an exact sequence of chain complexes

0→ C∗(U, V )

i
j


→ C∗(U)⊕ C∗(V )

(k,l)→ CA
∗ (X)→ 0.

The last guy is chain-homotopic to C∗(X).
The point is now to reason as follows: if we know the homology of U, V , then we

should know the homology of X. The way we do this is the very general and extremely
important theorem in homological algebra:

8.2 Theorem. Let 0 → A∗
f→ B∗

g→ C∗ → 0 be a short exact sequence of chain
complexes. Then there is a long exact sequence in homology

· · · → Hn(A)
f∗→ Hn(B)

g∗→ Hn(C)
d→ Hn−1(A)

f∗→ . . .

There are “boundary maps” d from Hn(C) → Hn−1(A). It’s kind of a horrendous
thing to do in certain ways, so we won’t prove all of it.

Proof. So what do we need to prove? First, we already have the maps f∗, g∗; we need
to define the map d. Then, when we have defined it, we have to check that the sequence
is in fact exact. The really interesting part of this is constructing the map, though.

We will construct
d : Hn(C)→ Hn−1(A).

To do this, let us write out the short exact sequence explicitly

�� �� ��
0 // An+1

//

��

Bn+1
//

��

Cn+1
//

��

0

0 // An //

��

Bn //

��

Cn //

��

0

0 // An−1
//

��

Bn−1
//

��

Cn−1
//

��

0
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Let us pick the equivalence class of a cycle γ ∈ Zn(C) representing some element of
Hn(C). We’d like to get a representative of some homology class in Hn−1(A). We start
by going left, since Bn → Cn is surjective. Find some γ̃ ∈ Bn which maps to γ in Cn.
This is a choice; it is uniquely determined only up to elements of An. Next, we move it
down, we take the differential ∂γ̃ ∈ Bn−1. Since the square commutes, we know that

g(∂γ̃) = ∂g(γ̃)) = ∂γ = 0.

In particular, ∂γ̃ actually is an element of An−1 (i.e. lifts uniquely to one), say ˜̃γ.
We now define the boundary of the homology class represented by γ to be the class
represented by ˜̃γ.

There are many things we need to check to see that it makes sense. First, we need
to check that ˜̃γ is a cycle; that’s because

f(˜̃γ) = ∂(f(˜̃γ)) = ∂∂γ̃ = 0.

This is a bit of diagram-chasing, which is best worked out for oneself.
We still have to check a whole bunch of things. For instance, what if we picked a

different γ̃ ∈ Bn? We could replace γ̃ with something in An. But when we take the
boundary to find the new ˜̃γ, we find the old ˜̃γ plus a boundary in An−1. This means
that we get the same homology class in Hn−1(A).

We next have to check that this Hn(C)→ Hn−1(A) is a homomorphism. But this
is clear.

The final big thing to check is that the associated long sequence is actually exact.
There are a whole bunch of things to check for this; we’ll just check one of them. It is
one of the things best done in the privacy of your own home, but it should be done at
least once in one’s life. For instance, let’s check that the kernel of

Hn(C)→ Hn−1(A)

is precisely the image of Hn(B). First, we need to see that the composition is zero.
This is easy though. If γ ∈ Zn(C) is equal in homology to g∗(β) for β ∈ Zn(B), then

we could have taken β to have been our γ̃, and consequently ∂β = 0. Thus our ˜̃γ would
be zero. In particular, the composition Hn(B)→ Hn(C)→ Hn−1(A) is zero.

Now let’s go the other way. Suppose that ∂[γ] (where [γ] ∈ Hn(C) is the class
represented by γ ∈ Zn(C)) is killed by the boundary map to Hn−1(A). In particular,

our ˜̃γ is equal to ∂α for some α ∈ An. Also, ∂f(α) = ∂γ̃. We can consider β = γ̃−f(α)
which has zero boundary, so represents something in the homology class of B. Thus
γ = g(γ̃) = g(β) because g ◦ f = 0. So we get exactness at this step. And that’s all
we’re going to do for the proof; the rest of exactness is left to the reader. N

Finally, we can apply this general nonsense to the case we had earlier:

8.3 Theorem (Mayer-Vietoris sequence). Let {U, V } be an open cover of a space X.
Then there is a long exact sequence

Hn(U ∩ V )→ Hn(U)⊕Hn(V )→ Hn(X)→ Hn−1(X)→ . . .
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Proof. This follows at once from the short exact sequence of complexes,

0→ C∗(U ∩ V )→ C∗(U)⊕ C∗(V )→ CA
∗ (X)→ 0

together with the fact that the homology of CA
∗ (X) is isomorphic to the homology of

X. N

This will let us compute the homology of a whole bunch of spaces. It is also useful,
incidentally, to know what the maps are. The map

Hn(U ∩ V )→ Hn(U)⊕Hn(V )

is given by [
i∗
−j∗

]
.

Let us now compute the homology of a simple case. The homology of a two-point
Hausdorff space is the direct sum of the homology of a point twice. If, more generally,
X = X − 0 tX1 for two spaces X0, X1 then

C∗(X) ' C∗(X0)⊕ C∗(X1)

inducing the isomorphisms

H∗(X) ' H∗(X0)⊕H∗(X1).

Knowing this, the homotopy invariance, and the Mayer-Vietoris sequence, is enough
to compute the homology of any space you’ll ever encounter. Let’s give some examples.

8.4 Example. Let’s compute the homology of S1. We will use the Mayer-Vietoris
sequence, by covering the circle with two arcs, each of which is homeomorphic to an
interval (and consequently contractible). Let U, V be these two arcs. Then U ∩ V is
the union of two arcs, and will be homotopy equivalent to two points.

We know that H0(U) = H0(V ) = Z and the higher homology vanishes. This is
because both are surjective. For the intersection, we have Z⊕Z in dimension zero, and
the higher homology is trivial. The long exact sequence looks like

H1(U∩V )→ H1(U)⊕H1(V )→ H1(S1)→ H0(U∩V )→ H0(U)⊕H0(V )→ H0(S1)→ 0.

This becomes

0→ 0→ H1(S1)→ Z⊕ Z→ Z⊕ Z→ H0(S1)→ 0.

We need to know what the map Z⊕Z→ Z⊕Z is. It is easy to see that it sends (x, y)
to (x− y, x− y) by the way the maps in the Mayer-Vietoris sequence were defined (by
small matrices (i∗,−j∗). The kernel and the cokernel are both Z so

H1(S1) ' Z, H0(S1) ' Z.

In higher dimensions, it’s all zero. Indeed, if n > 1, we have that

Hn(U ∩ V )→ Hn(U)⊕Hn(V )→ Hn(S1)→ Hn−1(U ∩ V )
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and since the first, second, and fourth parts of this are zero (since n− 1 ≥ 1), we have
that

Hn(S1) = 0 if n ≥ 2.

The conclusion is that by using the Mayer-Vietoris sequence, we’ve computed all
the homology of S1.

Let us start describing how to compute the homology of a 2-sphere. Again, we will
use Mayer-Vietoris.

8.5 Example. Let X = S2 be a 2-sphere. We cover it by the upper and lower
hemispheres together with a small strip attached in each case. For instance, if z is one
of the coordinates, we could take U = {z > −1

2} and V =
{
z < 1

2

}
. The intersection

deformation retracts to the equator, which is just S1, and we know the homology of
U ∩ V . But U, V are homeomorphic to the disk and are contractible.

Let’s start with H2. We have an exact sequence:

H2(S1)→ H2(U)⊕H2(V )→ H2(S2)→ H1(S1)→ H1(U)⊕H1(V )

Filling in the groups we know (from the previous example) yields

0→ 0→ H2(S2)→ Z→ 0→ 0

so that
H2(S2) ' Z.

We can play the same game as before to show that H1(S2) = 0.

Lecture 9
9/20

§1 Some algebra

We’ve come a long way, though it probably doesn’t feel like that since we haven’t seen
how this tool of homology gets used and what it tells you. A couple of more lectures
will be necessary to enhance the user interface so we can start using it a little bit.

Most of today will be organizing some algebra to get some tools that we will use.
As Eric explained last time, a short exact sequence of chain complexes

0→ A∗ → B∗ → C∗ → 0

gives a long exact sequence

Hn(A)→ Hn(B)→ Hn(C)→ Hn−1(C)→ . . .

on homology.
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Remark. Some people like to write short exact sequences as

A� B � C

instead of
0→ A→ B → C → 0.

Hopkins likes the first one, because the second seems as if the two zeros at the ends
are sentries stationed at the outside to keep things exact.

We did not learn, however, the snake or the five lemmas. We should probably
take a minute and talk about those. This is part of a branch of mathematics called
homological algebra. In the old days, there would be a whole course on homological
algebra. Nowadays, you just learn episodes of it in a course on algebraic topology.
Hopkins says he likes homological algebra, so there will be a fair bit in the course.

9.1 Theorem (Snake lemma). Suppose given a map of short exact sequences

0 // P

f

��

// Q

g

��

// R //

h
��

0

0 // L //M // N // 0

.

We can draw the kernels ker f, ker g, kerh, and their cokernels. Then there is an exact
sequence

0→ ker f → ker g → kerh→ cokerf → cokerg → cokerh→ 0.

The maps between the kernels and between the cokernels are the natural ones.

Proof. The boundary map kerh → cokerf is obtained via diagram-chasing. Take
something in R which is killed by h. Pull it back to Q; apply g and push it down to
M , which goes to zero in N and consequently comes from L. The image of this in the
cokernel L/Im(P → L) gives the map kerh→ cokerf .

We won’t actually prove the exactness, as we leave it to the reader as an exercise.
See the movie It’s My Turn. N

One can actually use the snake lemma to prove the long exact sequence in homology.
Alternatively, if you think of each of the vertical sequences in the snake lemma as a
chain complex (with all other maps zero), then the snake lemma is a special case of the
long exact sequence.

The five-lemma is something we’re really going to use.

9.2 Theorem (Five-lemma). Suppose given a morphism of exact sequences

A1
//

��

B1
//

��

C1
//

��

D1
//

��

E2

��
A2

// B2
// C2

// D2
// E2

.

Suppose the maps A1 → A2, B1 → B2, D1 → D2, E1 → E2 are all isomorphisms. Then
C1 → C2 is an isomorphism.

30



Lecture 9 Notes on algebraic topology

Proof. This is another diagram chase.
Let’s first prove that C1 → C2 is a monomorphism. Then the image in D2 is killed

by D1 → D2, so the image in D2 is zero. Thus the thing in C1 comes from something
in B1 such that the image in B2 gets killed by B2 → C2. So the image in B2 comes
from something in A2, and it follows that there is something in A1 whose image in B2

is the same as the thing in B1 sent to B2. Thus the thing in B1 comes from the thing
in A1. Thus the thing in C1 comes from something in A1, so is zero. Similarly one
shows it is an isomorphism.

This is just a vague sketch of the actual diagram-chasing. N

Remark. One actually has to have a map. For instance, consider the exact sequences

0→ Z/2Z→ Z/2Z⊕ Z/2Z→ Z/2Z→ 0

and
0→ Z/2Z→ Z/4Z→ Z/2Z→ 0.

There is no morphism between these two exact sequences which induces the identity
on the ends, for then it would be an isomorphism by the five-lemma.

§2 Relative homology

Let A be a subspace of X. Then C∗(A) is a subcomplex of C∗(X) in an obvious way.
The quotient C∗(X)/C∗(A) is called the complex of relative chains and is denoted

C∗(X,A).

Right now, it is a formal gadget. There is a short exact sequence of complexes

C∗(A)� C∗(X)� C∗(X,A).

9.3 Definition. We define the relative homology

Hn(X,A) = n− th homology of C∗(X,A).

If A ⊂ X, there is a long exact sequence:

9.4 Proposition. If A ⊂ X, there is a long exact sequence

Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ Hn−1(X) . . . .

Proof. Follows at once from the long exact sequence for a short exact sequence of chain
complexes. N

9.5 Example. If Hn(X,A) = Hn−1(X,A) = 0, then Hn−1(A) ' Hn−1(X). To see
this, just write out a piece of the exact sequence

0 = Hn(X,A)→ Hn−1(A)→ Hn−1(X)→ Hn−1(X,A) = 0.

Recall that if 0→ A→ B → 0 is exact, then A→ B is an isomorphism.
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That’s useful at the formal level.

9.6 Example (Reduced homology). Suppose A = pt = {∗}. In other words, X has a
base point.

By definition, the reduced homology of X is defined to be

H̃n(X) = Hn(X, ∗).

For many purposes, reduced homology is much more convenient than ordinary homol-
ogy. It doesn’t differ very much from ordinary homology, though. We know that there
is an exact sequence

Hn(∗)→ Hn(X)→ H̃n(X)→ Hn−1(∗)→ . . . .

The ending case of this is

H1(∗)→ H1(X)→ H̃1(X)→ H0(∗)→ H0(X)→ H̃0(X)→ 0.

Now we know that Hn(∗) = Z for n = 0 but H0(∗) = Z. So we know that, from
the first exact sequence that n > 1 implies

Hn(X)→ H̃n(X)

is an isomorphism.

In the last case, it’s not so simple. Let’s compute H̃1(X). The map ∗ → X admits a
retraction X → ∗. Applying homology shows that H0(∗)→ H0(X) admits a retraction,
so in particular is injective. In particular, the kernel of H0(∗) → H0(X) is zero and
H1(X, ∗) → H0(∗) is the zero map. It follows that H1(X) → H1(X, ∗) is surjective.
Since it is also injective (as H1(∗) = 0) we find that

H̃1(X) ' H1(X).

For n = 0, we have a split exact sequence

0→ H0(∗)→ H0(X)→ H̃0(X)→ 0;

we know the splitness because ∗ → X is a split injection. In particular,

H̃0(X)⊕ Z ' H0(X).

§3 A substantial theorem

Suppose A ⊂ X is a subspace. We can form the space X ∪ CA, which by definition is
X t A × [0, 1] modulo the relation a ∼ (0, a) for a ∈ A and (a, 1) ∼ ∗. In particular,
we pinch A off to a point as you go up.

9.7 Theorem. We have
H∗(X,A) ∼ H̃∗(X ∪ CA).
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Ideally, one would actually produce a map between these. We have two pairs

(X,A), (X ∪ CA, ∗).

However, these two don’t map to each other nicely. Nevertheless, we have maps of
pairs

(X,A)→ (X ∪ CA,CA)

and
(X ∪ CA, ∗)→ (X ∪ CA,CA).

We will show that maps on relative homology induced by these two maps of pairs leads
to isomorphisms in homology. This will prove the theorem.

Remark. We should emphasize something not discussed earlier. Suppose (X,A), (Y,B)
are pairs of spaces—i.e., A ⊂ X,B ⊂ Y are subspaces. Then we get maps of short
exact sequences

0 // C∗(A)

��

// C∗(X)

��

// C∗(X,A) // 0

0 // C∗(B) // C∗(Y ) // C∗(Y,B) // 0.

This induces a morphism of long exact sequences in homology, which I can’t typeset
now.

Proof of the theorem. Consider the map

(X ∪ CA, ∗)→ (X ∪ CA,CA).

We will show that the maps in relative homology thus induced are isomorphisms.

Hn(∗)

��

// Hn(X ∪ CA)

��

// Hn(X ∪ CA, ∗)

��

// Hn−1(∗)

��

// Hn−1(X ∪ CA)

��
Hn(CA) // Hn(X ∪ CA) // Hn(X ∪ CA,CA) // Hn−1(CA) // Hn−1(X ∪ CA).

Now the map ∗ → CA is a homotopy equivalence because the cone on any space is
contractible to the cone point. It follows that all the vertical maps in the diagram
except the middle one are isomorphisms because they come either from homotopy
equivalences or the identity map. So the maps in the middle, on relative homology, are
isomorphisms. That’s one step.

Now we need to show that

(X,A)→ (X ∪ CA,CA)

induces isomorphisms in relative homology. This will follow from the excision theorem,
since to get (X,A) from (X ∪CA,CA), we cut out an open set from both X ∪CA and
CA. We digress to discuss excision.

33



Lecture 10 Notes on algebraic topology

9.8 Theorem (Excision theorem). Suppose Z ⊂ B ⊂ Y and Z ⊂ Int(Y ). Then the
inclusion maps induce isomorphisms in homology

Hn(Y − Z,B − Z) ' Hn(Y,B).

Proof of excision. We only have one tool, which is the expression of homology depend-
ing on small chains. For this we need an open covering of Y . Namely, we will write

Y = B ∪ (Y − Z).

The interiors of these two sets cover Y . If A = {B, Y − Z}, then the A-chains CA
∗ (Y )

inject into C∗(Y ); this injection induces isomorphisms in homology. This was sketched
earlier, and was the expression of the idea that homology depends on small simplices.

By the way, what’s B∩ (Y −Z)? It’s B−Z. There is a diagram of chain complexes

C∗(B − Z) //

��

C∗(Y − Z)

��
C∗(B) // CA

∗ (Y ).

There are lots of special properties of this complex, for instance that it is a push-out.
Consider the cokernels, and draw them in:

C∗(B − Z) //

��

C∗(Y − Z)

��

// C∗(Y − Z,B − Z)

��

// 0

C∗(B) // CA
∗ (Y ) // C // 0,

where C is the cokernel of C∗(B − Z)→ CA
∗ (Y − Z).

In general, if we have sets S1, S2 that fill up a set T , then one can draw a diagram

Z {S1 ∩ S2}

��

// Z {S2}

��

// Z {S1 − S1 ∩ S2}

��

// 0

Z {S1} // Z {T} // Z {T − S1} // 0

where the last downward arrow is an isomorphism. This implies that the last downward
arrow in the earlier thing is an isomorphism. More simply, we could argue via the
isomorphism theorems in elementary algebra that

CA
∗ (Y )/C∗(B) ' C∗(Y − Z) + C∗(B)/C∗(B) ' C∗(Y − Z)/C∗(B − Z).

In any case, this means that CA
∗ (X)/C∗(B) has the same homology as Hn(Y −Z,B−Z).

But this first guy has the same homology as H∗(X,B) because CA
∗ (Y ) is homotopy

equivalent to C∗(Y ), and one can use the five lemma. This proves excision. N

We will finish up the proof of the main result next time. N

34



Lecture 10 Notes on algebraic topology

Lecture 10
9/22

§1 Finishing up last week

We had a little bit of the proof left over at the end of last class. Namely, last time we
proved the excision theorem:

10.1 Theorem. Suppose Z ⊂ A ⊂ X and Z ⊂ Int(A). Then the map (X−Z,A−Z)→
(X,A) induces isomorphisms in homology

H∗(X,A)→ H∗(X − Z,A− Z).

We deduced this from the same techniques as Mayer-Vietoris.
We were in the middle of proving the important result that

H∗(X,A) = H̃∗(X ∪ CA).

Now, we shall finish the proof. In particular, relative homology is a special case of
reduced homology. We were going to prove this by the collection of maps

H∗(X,A) // H∗(X ∪ CA,CA)

H∗(X ∪ CA, ∗)

OO
.

We showed that the vertical map was an isomorphism via the five-lemma and the fact
that CA deformation retracts onto a point. Now, we want to prove that the horizontal
map is an isomorphism. This we will do via excision.

Now it would be nice to take Z = {(a, t), t > 0, a ∈ A}, in short everything in CA
which is not in X. If we could excise this Z from the pair X ∪ CA,CA, we would be
able to see that the horizontal map is an isomorphism. However, Z is too large, and
we cannot apply excision directly.

However, we can excise the set

Z =

{
(a, t) : t ≥ 1

2

}
which is a closed subspace of CA. The closure is certainly the in the interior of CA.
By excision, we find

H∗(X ∪ CA,CA) ' H∗(X ∪A× [0, 1/2], A× [1/2])

since the remaining non-excised stuff is just a cylinder on A. This last guy, however,
is isomorphic to H(X,A), because the cylinder CA deformation retracts onto A. In
particular, there is a homotopy equivalence of pairs

(X ∪A× [0, 1/2], A× [0, 1/2]) ' (X,A).
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10.2 Lemma. Suppose (X,A)→ (Y,B) is a homotopy equivalence of pairs. Then the
maps

H∗(X,A)→ H∗(Y,B)

are isomorphisms.

Proof. This can be seen using the five-lemma, for instance. N

§2 Triples

There is a variation that we want to mention, because it will make things cleaner.
Suppose one has three spaces A ⊂ B ⊂ X. Then we have an inclusion

C∗(A) ⊂ C∗(B) ⊂ C∗(X)

from which one gets an exact sequence

0→ C∗(B)/C∗(A)→ C∗(X)/C∗(A)→ C∗(X)/C∗(B)→ 0.

If we write in terms of relative chains, we get an exact sequence

C∗(B,A)� C∗(X,A)� C∗(X,B),

which leads to the long exact sequence for a triple

Hn(B,A)→ Hn(X,A)→ Hn(X,B)→ Hn(B,A)→ . . . .

10.3 Example. Suppose A is a base point. Then homology relative to A is reduced
homology. So the long exact sequence for a triple becomes

H̃n(B)→ H̃n(X)→ H̃n(X,B)→ H̃n−1(B),

which is a long exact sequence for a pair in reduced homology. Since reduced homology
is more convenient, this is useful.

§3 Another variant; homology of the sphere

10.4 Example (Mayer-Vietoris for reduced homology). We now give another variation.
Suppose X = U ∪ V is the union of two open sets with the basepoint ∗ ∈ U ∩ V . Then
there is a Mayer-Vietoris sequence in reduced homology. It goes

H̃n(U ∩ V )→ H̃n(U)⊕ H̃n(V )→ H̃n(X)→ H̃n−1(U ∩ V )→ . . .

An example of Mayer-Vietoris for reduced homology is in the computation of the
homology of the sphere.

10.5 Example (Homology of the sphere). Let X = Sn, U1 = Sn − north pole, U2 =
Sn − south pole. The intersection is homotopy equivalent to the n − 1-sphere. The
reduced Mayer-Vietoris sequence goes

H̃k(S
n−1)→ H̃k(U1)⊕ H̃k(U2)→ H̃k(S

n)→ H̃k−1(Sn−1)→ . . . .
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Everything involving U1, U2 has trivial reduced homology since these are contractible.
The exact sequence shows that

H̃∗(S
n) ' H̃∗−1(Sn−1),

and by induction one finds

H̃k(S
n) =

{
Z if n = k

0 otherwise.

This is a highly useful calculation, which has numerous consequences that we will
discuss next time. We have the advantage of a lot of re-thinking of the material, so
that it comes out clean; it doesn’t seem as substantive as it really is.

Let us do just one simple consequence of this.
If one has two vector spaces V,W , and a linear isomorphism V →W , then dimV =

dimW . The proof very much uses linearity, though. But the same theorem is true if we
just had a homeomorphism. In particular, the dimension of a vector space is topological
in nature, not just a linear algebra fact.

10.6 Theorem. Rn is not isomorphic to Rm unless n = m.

But let us prove something even stronger.

10.7 Theorem (Invariance of dimension). If U ⊂ Rn and V ⊂ Rm and U is homeo-
morphic to V , then n = m.

The argument really is a generalization of the familiar argument that R is not
homeomorphic to R2 by removing a point and looking at connected components.

Proof. Suppose we have a homeomorphism U → V , sending some point x ∈ U via
x→ y. It follows that U − x is homeomorphic to V − y. In particular, we find that

H∗(U,U − x) ' H∗(V, V − y)

under this map of pairs (U,U − x)→ (V, V − y).
Let us compute these relative homology groups. We can find a little set B around

x homeomorphic to a ball of radius ε. Then we know that

H∗(U,U − x) ' H∗(B,B − x)

by excising U − B. By looking at the long exact sequence in relative and reduced
homology, we find from contractibility of B:

Hk(B,B − x) ' H̃k−1(B − x)

But the reduced homology of B − x is the reduced homology of the sphere Sn−1, onto
which B − x deformation retracts.

In particular, we find that H∗(U,U−x) ' H̃∗−1(Sn−1), and similarly H∗(V, V −x) '
H̃∗−1(Sm−1). But unless m = n, the homology of the m − 1 and n − 1 spheres are
different. N
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§4 Equivalence of simplicial and singular homology

There are a number of algebraic things to be introduced on the fly.
Suppose X is a ∆-complex. We have defined these concepts earlier, so we shall not

review them. Then X is filtered by its skeleton

X(0) ⊂ X(1) ⊂ . . .

where X(n) is the n-skeleton, i.e the part built out of simplicies of dimension at most
n. We defined a while back, without talking about it since, the ∆-chain complex

C∆
∗ (X) ⊂ C∗(X)

where C∆
n (X) is the free abelian group on the set of characteristic maps ∆n → X.

(Cn(X) allows all continuous maps; each characteristic map has the special property
of being a homeomorphism on the interior.) By assumption, the characteristic maps
are stable under the application of the boundary map: this is because of the way
∆-complexes were defined.

The main theorem is

10.8 Theorem. The map C∆
∗ (X) → C∗(X) induces isomorphisms in homology. In

particular,
H∆
∗ (X) ' H∗(X)

for a ∆-complex X.

In particular, we only have to use the ∆-chains to compute homology.

Proof. We will induct on n to show that

H∆
∗ (X(n))→ H∗(X

(n)),

which will prove the theorem in the case for ∆-complexes which have only simplices of
bounded dimension. This will cover all the examples we are interested in. The general
case follows from a simple argument, but we will explain some variants of this in a later
lecture, when we can use more category-theory. For now, we will stick to ∆-complexes
of bounded dimension.

The proof is actually pretty easy. The induction starts at n = 0. Here X(0) is a
discrete set, and we know the homology in that case is just the free abelian group on
the same set in dimension zero and is zero in higher dimensions, i.e.

H∗(X
(0)) ' Z {X0} .

This is also true for ∆-homology, as is easy to see.
Now let us look at the long exact sequence of a pair (X(n), X(n−1)). The sequence

returns

H∆
∗+1(X(n), X(n−1))

��

// H∆
∗ (Xn−1) //

��

H∆
∗ (X(n)) //

��

H∆
n (X(n), X(n−1)

��

// H∆
∗ (X(n−1))

��
H∗+1(X(n), X(n−1)) // H∗(X

n−1) // H∗(X
(n)) // Hn(X(n), X(n−1) // H∗(X

(n−1))

38



Lecture 11 Notes on algebraic topology

We have to show the middle downward homology map is an isomorphism. By induction,
the second and fifth downward maps are isomorphisms. So it is sufficient to show that

H∆
∗ (X(n), X(n−1))→ H∗(X

(n), X(n−1)

is an isomorphism. (It should be clear what relative ∆-homology; it is the homology of
suitable quotients of the usual ∆-chain complexes.) But C∆

∗ (X(n), X(n−1) is the free
abelian group on the n-simplices in the ∆-structure, and is zero elsewhere; its homology
is the same.

What about H∗(X
(n), X(n−1))? By (a slight variant of) ordinary excision, this

isomorphic to
H∗(t∆n,t∂∆n)

with the coproduct ranging over the various n-simplices. This is not very clear, though;
we’re out of time, so will clarify next lecture.

Anyhow, this homology H∗(t∆n,t∂∆n) is the same group
⊕

n simplices Z; we’ve
guaranteed that the relative homology and relative ∆-homology groups are the same.
One has to check that the map is an isomorphism, for which you have to go to Hatcher.

N

Lecture 11
9/24

Kirsten Wickelgren taught the next couple of lectures.
Last time, we were in the middle of showing that the natural map

C∆
∗ (X)→ C∗(X)

was a homology isomorphism. We were stuck in the middle of the proof, and ultimately
we have decided not to resolve the issue until we discuss cellular homology.

§1 Degree of a map

Let f : Sn → Sn be a map. This induces a map Hn(Sn)→ Hn(Sn), and this is Z→ Z
for n > 1 by the homology computation of the sphere. This map must be multiplication
by some number d.

11.1 Definition. The degree of f is defined to be d.

It follows that f is just multiplication by d on homology.

11.2 Example. Let ∆n be the n-simplex. You can take two copies ∆n
1 ,∆

n
2 , which you

can glue to form Sn by identifying the boundaries via the identity map. So

Sn = ∆n
1 t∂∆n

1 =∂∆n
2

∆n
2 .

In particular, f : Sn → Sn can be given by switching the two copies of ∆n. Let us
compute the degree of this map.

Now let us choose an isomorphism Hn(Sn) ' Z. The singular class given by ∆n
1 −

∆n
2 , which is a cycle since the boundaries are identified, is a generator for Hn(Sn).

Since f∗ sends this to ∆n
2 −∆n

1 , it follows that f has degree −1.
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Now we prove a few properties of the degree.

1. The identity has degree 1. This is because 1 induces the identity in homology.

2. deg(f ◦g) = deg f deg g for f, g : Sn → Sn. This is because homology is a functor,
and (f ◦ g)∗ = f∗ ◦ g∗.

3. A homotopy equivalence has degree ±1, because a homotopy equivalence induces
an isomorphism on homology.

4. If f, g are homotopic, then deg f = deg g.

Morally,

Degree counts pre-images with a multiplicity.

In particular, if you consider z → zn, S1 → S1, you get a map of degree n: there are n
pre-images of degree one. (We have not proved this.)

11.3 Example. The antipodal map −1 : Sn → Sn corresponds to multiplication by
−1 on Rn+1 restricted to Sn. We compute its degree.

Let the coordinates for Rn+1 be (x0, . . . , xn). We can define the reflection ρi in
the plane xi = 0 (so it flips the ith coordinate). The antipodal map is the composite
of all the ρi (in any order you want).

Since each reflection has degree −1 by the first example (the ∆n
1 ,∆

n
2 there can be

viewed as hemispheres), it follows that −1 has degree (−1)n+1.

This has some interesting consequences.

11.4 Proposition. There is no continuous nowhere-vanishing vector field on an even-
dimensional sphere.

Note that an odd-dimensional sphere S2n+1 has a continuous, nowhere-vanishing
vector field sending x = (x0, x1, . . . , x2n+2) → (−x1, x0,−x3, x2, . . . , ). This is always
orthogonal to x, so it lies in the tangent space of Sn at x. This doesn’t work for an
even sphere.

Proof. Suppose to the contrary we had a continuous vector field v : S2n → R2n+1. We
can assume, by switching to v/ ‖v‖, that v actually has image in S2n.

So we end up with a map v : S2n → S2n such that v(x) ⊥ x for all x ∈ S2n.
We now prove two lemmas. Together, they will imply that v has degree −1 and 1
simultaneously, which is a contradiction. It is thus sufficient to prove the lemmas.

11.5 Lemma. If f : Sm → Sm has no fixed point, then f is homotopic to the antipodal
map and has degree (−1)m+1.

(This implies that the degree of v above is −1.)
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Proof. We define
H : I × Sm → Sm

by sending

(t, x)→ f(x)(1− t) + (−x)(1− t)
‖f(x)(1− t) + (−x)(1− t)‖

and since f(x),−x are never antipodal, the denominator never vanishes. This is the
required homotopy.

Geometrically, we are just drawing segments between f(x) and −x, and going along
these segments, and then normalizing to have norm one. N

Next, we do the same thing for a map which never sends a point to its antipode.

11.6 Lemma. If f : Sm → Sm is such that f(x) 6= −x for all x ∈ Sm, then f is
homotopic to the identity and has degree 1.

(This implies that the degree of v above is 1.)

Proof. We define
H : I × Sm → Sm

by sending

(t, x)→ f(x)(1− t) + x(1− t)
‖f(x)(1− t) + x(1− t)‖

and since f(x), x are never antipodal, the denominator never vanishes. This is the
required homotopy.

Geometrically, we are just drawing segments between f(x) and x, and going along
these segments, and then normalizing to have norm one. N

N

Another consequence is that you can limit the groups that freely act on spheres.

11.7 Definition. A group G acts on a space X if there is given a homomorphism

G→ Homeo(X).

So each g ∈ G acts as a homeomorphism on X.
G acts freely if for all g ∈ G− {1}, g has no fixed points as a map X → X.

Z/2 acts freely on any sphere thanks to the antipodal map. But you can’t have
interesting groups acting on spheres. Namely:

11.8 Proposition. The only groups that can act freely on an even-dimensional sphere
S2n are Z/2 and {1}.

Proof. Let G be a group acting freely on S2n. By the lemma, for all g ∈ G which
are not the identity, the degree of g is equal to the degree of the antipodal map, i.e.
−1; this is because g has no fixed points. This is impossible unless G has only one
element other than the identity. Indeed, deg : G→ {−1, 1} is a homomorphism, so the
preimage of −1 is a subgroup of G of index 2. N
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§2 Computing the degree

The key tool here is the local degree of a map f : Sn → Sn at some point x ∈ Sn.
To get a local degree, we use excision. Recall that

Hn(Sn, Sn − {x}) ' Z

because Sn is an n-dimensional manifold, and we can use excision. We used this last
time to show invariance of dimension for manifolds. More generally, if U is a small
neighborhood of x, then Hn(U,U − x) ' Z.

Suppose U is a neighborhood of x and V is a neighborhood of f(x), such that
f(U) ⊂ V . Suppose moreover that f does not assume the value f(x) in U except at x.
Then we have a map

Hn(U,U − x)
f∗ //

'
��

Hn(V, V − f(x))

'
��

Hn(Sn, Sn − x)

'
��

Hn(Sn, Sn − f(x))

'
��

Z Z

where the vertical arrows are isomorphisms by excision. Note, moreover, that all this
depends only on a choice of one isomorphism Hn(Sn) ' Z. Everything else is induced
by an inclusion or a long exact sequence. Indeed, once we choose a generator of Hn(Sn),
we get generators of Hn(Sn, Sn − x) and Hn(Sn, Sn − f(x)).

11.9 Definition. The induced map Z → Z induced by f as in the above diagram is
called the local degree of f , written degx f . This does not depend on the choice of
generator for Hn(Sn).

Let’s do an example of these local degrees. This will enable us to compute degrees
in interesting cases, since the global degree is always the sum of the local degrees. I
didn’t live-TEXthis right, but the example is in Hatcher of computing the local degree
of a map that starts from a sphere, goes into a “wedge” of spheres, and “crushes”
almost all the spheres in the wedge.

Lecture 12
9/27

§1 Recap

Our first task is to do a better job with the example of local degree. We recall that the
degree (plain old degree) of f : Sn → Sn is the map Z→ Z induced by f∗ : Hn(Sn)→
Hn(Sn) (at least when n ≥ 1).

The local degree was defined as follows. Namely, we pick y ∈ Sn such that f−1(y)
is finite and nonempty, say {x1, . . . , xm}. Choose a neighborhood V of Y and disjoint
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neighborhoods Ui of xi such that f(Ui−{xi}) ⊂ V −{y}. Then we have isomorphisms

Hn(Ui, Ui − {xi}) ' Hn(Sn, Sn − {xi}) ' Hn(Sn).

But we have maps

Hn(Ui, Ui − {xi})→ Hn(V, V − {y}) ' Hn(Sn, Sn − {y}) ' Hn(Sn) = Z.

Once we choose an isomorphism Hn(Sn) ' Z, everything else is determined, and we
get a map

fxi : Z→ Z

whose degree is called the local degree degxi f . This does not depend on the choice
of isomorphism Hn(Sn) ' Z.

12.1 Example. Consider S1, which is homeomorphic to the boundary of an octagon.
In this octagon, we mark the edges a, b, c, d in such a way that the identification leads
to the Riemann surface of degree two. The boundary with the identifications is thus a
wedge of four circles a, b, c, d. So we get a map

S1 → ∨4S
1

which we compose with the “crushing” map

∨4S
1 → S1

that crushes circles b, c, d. The map S1 → S1 thus obtained has local degree −1 and
+1 when you look at points in the inverse image of a generic point in the a-circle S1.

I don’t feel like writing up the details; this is best actually spoken. Basically, the
point is that at one point on edge a, you’re preserving the orientation; at the other,
you’re reversing the orientation. There was a proper discussion in class.

§2 Degree can be calculated locally

12.2 Proposition. The degree is the sum of the local degrees. That is, if f : Sn → Sn,
and y has finitely many preimages {x1, . . . , xm}, then

deg f =
∑

degxi f.

Proof. To do this, we’re going to look at the relative homology of

Hn(Sn, Sn − {x1, . . . , xm}).

We have a canonical map Hn(Sn) → Hn(Sn, Sn − {x1, . . . , xm}), though it is not an
isomorphism.

As before, we choose V a nbd of y and the Ui disjoint nbds of xi. We have maps

Hn(Ui, Ui − xi) // Hn(Sn, Sn − xi) // Hn(Sn, Sn − {x1, . . . , xm}) Hn(Sn).oo
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By excision,5 Hn(Sn, Sn − {x1, . . . , xm}) is isomorphic to the direct sum of⊕
Hn(Ui, Ui − xi)

under the injections

Hn(Ui, Ui − xi)→ Hn(Sn, Sn − {x1, . . . , xm})

induced by the map of pairs (Ui, Ui−xi)→ (Sn, Sn−f−1(y)). The map f∗ : Hn(Sn)→
Hn(Sn) factors through

Hn(Sn) ' Hn(Sn − f−1(y)) '
⊕

Hn(Ui, Ui − xi)
f∗→ Hn(Sn, Sn − y)→ Hn(Sn).

Note that the thing marked f∗ above actually corresponds to the local degree.
Now the generator 1 ∈ Hn(Sn) is going to go to the element (1, 1, . . . , 1) in the

direct sum Hn(Ui, Ui − xi). That’s because the projection

Hn(Sn, Sn − {x1, . . . , xm}) =
⊕

Hn(Ui, Ui − xi)→ Hn(Uj , Uj − xj)

can be described geometrically, just by using the inclusion (Sn, Sn−f−1(y))→ (Sn, Sn−
xj). Note that Hn(Sn, Sn−xj) ' Hn(Uj , Uj−xj). This gives the projection and shows
that the element 1 generating Hn(Sn) goes to the collection of ones in

⊕
Hi(Ui, Ui−xi).

From this, and the above factorization of f∗, the result follows. This is confusing
and should be thought through carefully. The key point is the resolution of Hn(Sn, Sn−
f−1(y)) into the direct sum

⊕
Hn(Ui, Ui − xi) and the fact that 1 in Hn was sent into

the bunch of 1’s in the latter direct sum. N

§3 Cellular homology

This gives a very computable way of doing homology for a CW complex or a ∆-complex.
We will do this for finite complexes. (Later we will discuss how this generalizes to
infinite ones.)

Recall that a finite CW complex X has a filtration X(0) ⊂ X(1) ⊂ · · · ⊂ X(d) = X.
For all n, the nth step in the filtration is built by attaching various n-cells Dn to X(n−1)

via boundary maps Sn−1 → X(n−1).
In other words, given X(n−1), we obtain X(n) from a set An of maps f : Sn−1 →

X(n−1) and let
X(n) = X(n−1) ∪f :∂Dn→X(n−1) tAnDn.

So X(0) is just a bunch of discrete points, X(1) has a few intervals attached (with the
boundaries identified to some of the discrete points), and so on.

Cellular homology allows homology to be computed via a highly understandable
chain complex. The chain complex will in the nth stage will be Z-free on the n-cells.
The different maps between the various free abelian groups will be matrices of degrees.

The reason we can do this is that

Hn(X(n), X(n−1))

is a free abelian group. This is what we will prove in the remainder of class time.

5Excise everything not in the Uj .
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12.3 Proposition. If X is a finite CW complex, then Hn(X(n), X(n−1)) is free on the
set of n-cells.

Proof. In order to do this, we will need a technical proposition:

12.4 Definition. If A ⊂ X is a subspace, then A is a deformation retract if there
exists a retract r : X → A which is homotopic relative to A to the identity 1 : X → X.
As a result, A→ X is a homotopy equivalence, and so is A/A→ X/A.

This means that there is H : X × I → X such that H(x, 0) = x, H(X × 1) ⊂ A,
and H(a, t) = a for all a ∈ A, t ∈ I.

The technical proposition says that you can quotient out by certain closed spaces
to compute relative homology.

12.5 Proposition. Let A ⊂ X be a closed subspace such that there exists an open
neighborhood V ⊃ A that deformation retracts onto A. Then

Hn(X,A) ' H̃n(X/A).

This is exactly what we want for computing relative homology of CW-complexes.
Indeed, X(n)/X(n−1) is a wedge sum of n-spheres. As a result, the proposition implies
that Hn(X(n), X(n−1)) is the reduced n-homology of a wedge of these spheres, so is free
abelian on the set of attached n-cells. As a result, we just need to prove this technical
proposition.

Proof. Now V deformation retracts onto A. In particular,

Hn(X,A) ' Hn(X,V )

because the maps Hn(A)→ Hn(V ) are isomorphisms. Let us show this. Indeed, when
one draws the two long exact sequences of pairs

H∗(A) //

'
��

H∗(X) //

'
��

H∗(X,A)

��

// H∗−1(A)

'
��

// H∗−1(X)

'
��

H∗(V ) // H∗(X) // H∗(X,V ) // H∗−1(V ) // H∗−1(X)

where everything but possibly the center is an isomorphism (since A→ V is a homotopy
equivalence). So the middle maps are isomorphisms. We have used the five lemma.

Now A/A→ V/A is a homotopy equivalence. So we can do the same exact sequence
argument to find that

H̃∗(X/A) ' H∗(X/A,A/A) ' H∗(X/A, V/A).

But H∗(X/A, V/A) is isomorphic to H∗(X/A − ∗, V/A − ∗) by excision. Similarly,
H∗(X,V ) is isomorphic to H∗(X −A, V −A). Now the two pairs

(X/A− ∗, V/A− ∗), (X −A, V −A)

are homeomorphic. So they have the same homology.
It follows that H̃∗(X/A) ' H∗(X/A, V/A) ' H∗(X,A). That completes the proof.

N

N
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Lecture 13
[Section] 9/27

§1 Jordan curve theorem

Some people have heard about the Jordan curve theorem.

13.1 Theorem (Jordan curve theorem). Let C be a simple plane curve. Then there
are two points in R2 −C such that every point in R2 −C can be joined to one of them
in a path not hitting C.

In other words, R2 − C has two components. The boundary of each is C.
Another way of saying this is that if γ : S1 → R2 is an injective map, then

H0(R2 − γ(S1)) = Z2.

Since by adding a point at infinity we do not change the connected components, we
can replace R2 by S2. In particular, we’d like to show that H0(S2 − γ(S1) is Z2.

Start with a different problem. Let’s look at maps out of an interval.

13.2 Lemma. Let γ : I → S2 be an injective map. Then H̃∗(S
2 − γ) = 0.

Proof. Suppose the contrary. Consider Xa,b = S2 − γ([a, b]). Then Xa,b ∪Xb,c is just
S2 − γ(b) and Xa,b ∩ Xb,c = Xa,c. So we can apply Mayer-Vietoris to this cover. We
get a long exact sequence

H̃∗+1(S2 − γ(b))→ H̃∗(Xa,c)→ H̃∗(Xa,b)⊕ H̃∗(Xb,c)→ H̃∗(S
2 − γ(b)).

However, S2 − γ(b) is contractible. So the middle map is an isomorphism.

Let us suppose that ω ∈ H̃n(X0,1) − 0. Then ω must be nontrivial in one of

H̃n(X0,1/2) or ˜Hn(X1/2,1). Then keep going. We get that ω is not zero in H̃n(Xa,b))
where a, b get closer and closer to some point x, since a nested sequence of compact
intervals must have a nonzero intersection.

Now S2−x has trivial homology. In particular, ω is a boundary ∂B in S2−x. But
the boundary must have compact image, i.e. B must have compact image. So ω must
be a boundary ∂B in some H̃n(Xa,b) where a, b are close enough to x, contradicting
the assumption that it is nontrivial there. N

Now we are almost done in our attempt to do this for γ : S1 → S2. Let γ : S1 → S2

be an injective map. We can decompose S1 into two halves A,B, each of which is an
arc.

We have a long exact sequence (Mayer-Vietoris with S2 − γ(A), S2 − γ(B)—the
union is S2 minus two points):

H̃n+1(S2−γ(A))⊕H̃n+1(S2−γ(B))→ H̃n+1(S2−∗, ∗′)→ H̃n(S2−γ)→ H̃n(S2−γ(A))⊕H̃n(S2−γ(B))

But the two ends are zero since S2 minus an interval has trivial reduced homology as
shown. It follows that

H̃0(S2 − γ(S1)) ' H̃1(S2 − ∗, ∗′) ' H̃1(S1) ' Z

as S2 − ∗, ∗′ deformation retracts onto a circle S1.
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§2 Suspensions

Let X be a space. Then we can consider the suspension ΣX obtained by taking the
cylinder X × I and collapsing X ⊗ {0} and X ⊗ {1} to a point. In general,

ΣSn ' Sn+1.

There is a nice relation between the homology of X and ΣX.

13.3 Proposition. H̃n(X) ' H̃n+1(ΣX).

Proof. Indeed, there is an open cover ΣX = U ∪ V where U, V are open sets whose
intersection deformation retracts onto X and such that U, V are contractible. This is
because U can consist of pairs (x, t) with t > 1

4 and V can consist of points (x, t) with
t < 3

4 . The Mayer-Vietoris sequence in reduced homology now immediately gives the
result. N

In general, there is a similar relation between homotopy groups:

πn(X) ' πn+1(ΩX).

This follows because Σ and Ω are adjoint functors.

§3 Example of cellular homology

Let us compute the homology groups of the sphere (not with the very simple cell
structure). We already know the answer, of course.

Never mind, can’t possibly liveTEX this. The homology of S2 was computed via
cellular homology. Then, RP 2 was done via the canonical cellular structure. More
generally, RPn can be done in this way.

Then there was a discussion of what the lens space looks like.

Lecture 14
9/29

§1 An application of degree

There is an important application of the degree of a map that is highly useful. We
have to show that the homotopy invariance of degree implies the fundamental theorem
of algebra.

14.1 Theorem. Every nonconstant polynomial in C[z] has a complex root.

Proof. When the absolute value of the input is very large, the polynomial map looks
like z → zd.

So to begin with the proof, we consider the degree of

z → zd,

47



Lecture 14 Notes on algebraic topology

S1 → S1. If you view S1 as a d-gon, then each side goes around the whole circle once.
Since a generator of H1(S1) is given by the sum of the sides of the d-gon, it follows
that z → zd takes a homology generator to d times it. In particular, the degree is d.

Consider a hypothetical monic nonconstant polynomial

f(z) = zd + ad−1z
d−1 + · · ·+ a0,

which has no root in C. Then the paths γr defined by γr(t) = f(reit) produces a family
of maps from S1 → C− {0}. Projection to S1 gives a family of maps

Γr : S1 → S1, Γr(t) =
f(reit)

|f(reit)|

which are obviously homotopic to each other. When r is large, then f is approximately
zd so γr is approximately t → rdeidt, implying Γ is basically z → zd. Thus all the Γr
have degree d. But Γ0 is constant so has degree zero, contradiction.

To be clear, when r � 0, the point is that Γr is very close to z → zd, and any two
very close maps S1 → S1 are homotopic. N

§2 Cellular homology

We now discuss a way to compute the homology of CW complexes.
Let X be a CW complex. Then there is a filtration on X of the form X(0) ⊂ X(1) ⊂

. . . such that X(n) is obtained from attaching n-cells to the n− 1-skeleton X(n−1). Let
the set of n-cells used be An.

We are going to work with finite complexes, so we have X = X(d) for some d. The
goal is to get a chain complex

CCW∗ (X)

whose homology is the singular homology H∗(X). CCW∗ (X) will be free in dimension
k on Ak.

Last time, we saw that Hn(X(n), X(n−1)) ' ZAn . Using this fact, we will get the
above fact. More generally, since X(n−1) is locally a deformation retract, we have that

Hk(X
(n), X(n−1)) ' H̃k(X

(n), X(n−1)) '

{
ZAn for k = n

0 otherwise

because X(n)/X(n−1) is the wedge sum of various n-spheres indexed by An.

14.2 Definition. We define CCW∗ (X) as follows. The group CCWn (X) is defined to be
Hn(X(n), X(n−1)). To get the boundary map, we take the composition

Hn(X(n), X(n−1))→ Hn−1(X(n−1))→ Hn−1(X(n−1), X(n−2))

where the first map is the boundary map in the long exact sequence and the second
map comes from the inclusion.
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This is indeed a chain complex. If we compose two consecutive maps, we find

Hn(X(n), X(n−1))→ Hn−1(X(n−1))→ Hn−1(X(n−1)), X(n−2))

→ Hn−2(X(n−2))→ Hn−2(X(n−2), X(n−3))

where the middle two are just consecutive maps in a suitable long exact sequence. So
the whole composition is zero.

14.3 Proposition. The homology H∗(C
CW
∗ (X)) is isomorphic to singular homology

H∗(X).

To see this, we will prove

14.4 Lemma. Hk(X
(n)) = 0 if k > n.

This would be necessary to show that cellular homology worked, because X(n) has
no k-cells.

Proof. Induction. When n = 0, then X(0) is just a bunch of discrete points, and
evidently Hk(X

(0)) = 0 when k > 0.
Assume the lemma holds for n− 1. Consider the piece of the long exact sequence

Hk(X
(n−1))→ Hk(X

(n))→ Hk(X
(n), X(n−1)).

By the inductive hypothesis, the left is zero. The right is zero because of the compu-
tation of H∗(X

(n), X(n−1)), which is the reduced homology of a wedge of spheres. N

Remark. By Mayer-Vietoris, the homology of a wedge of spaces Yi such that the
basepoints have contractible neighborhoods satisfies

H∗(∨Yi) =
⊕

H∗(Yi).

14.5 Lemma. The inclusion X(n+1) → X induces an isomorphism Hk(X
(n)) →

Hk(X) if n ≥ k + 1.

Proof. Also by induction. This time, however, we use descending induction. For n = d,
the claim is true because X(n) = X. Assume that the lemma holds for n+ 1; we prove
it for n.

By the inductive hypothesis, the inclusion X(n+1) → X induces isomorphisms on
Hk, k ≤ n. Now we want to show something similar for X(n) → X. By this hypothesis,
it is sufficient to show that X(n) → X(n+1) induces isomorphism in homology for
k + 1 ≤ n. But we can use the long exact sequence in homology, as usual:

Hk(X
(n+1), X(n))→ Hk(X

(n))→ Hk(X
(n+1))→ Hk(X

(n+1), X(n)).

Since in this exact sequence we have k < n, we also have that the two ends are zero,
and the map on Hk is an isomorphism. The lemma is proved. N

Now, let us prove the proposition.
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Proof. Now one writes some exact sequences. I will try to liveTEXthis up properly
later. At level n, we have Hn(X(n), X(n−1)). We recall that the boundary maps were
given by

Hn(X(n+1), X(n)) = 0

0 = Hn(X(n+1))

((QQQQQQQQQQQQQ
Hn(X(n+1)) ' Hn(X)

44iiiiiiiiiiiiiiii

Hn(X(n))

((RRRRRRRRRRRRR

66lllllllllllll

Hn+1(X(n+1), X(n))

66mmmmmmmmmmmmm
Hn(X(n), X(n−1))

In particular, we can writeHn(X) as the cokernel ofHn+1(X(n+1), X(n−1))→ Hn(X(n)).
Now, the kernel of the map out of Hn(X(n), X(n−1)) can be computed by drawing more
exact sequences and extending this diagram by symmetry, together with the same tricks
used above. I find it easier to think about than write about. N

Lecture 15
10/1

§1 The cellular boundary formula

The first thing we have to do today is to talk about cellular homology. Well, we know
what the cellular complex’s groups are. Recall that if we have a CW complex X with
a skeletal filtration

X(0) ⊂ X(1) ⊂ · · · ⊂ X(d) = X

such that each X(n) is constructed from X(n−1) by gluing n-cells, which form a set An.
Suppose that the attaching maps are given by iα : Dn → X(n).

The cellular chain complex was

Hn(X(n), X(n−1))→ Hn−1(X(n−1), X(n−2))

where the boundary map was the composition of a boundary map for the exact sequence
of a pair and the map X(n−1) → (X(n−1), X(n−2)). Here the nth group turns out in
fact to be free on An. In other words, An is a basis for Hn(X(n), X(n−1)), because

this latter guy is isomorphic to H̃n(X(n), X(n−1)), and this quotient is just a wedge of
spheres.

The question is what the boundary of the element α ∈ An is as an element of the
n−1st group, i.e. as a sum of elements β ∈ An−1. The definition of the boundary map
sends α (given by iα) to iα|∂Dn , which becomes an element of the n − 1st group. For
finite free modules, we have projections. So Hn−1(X(n−1), X(n−2)) projects onto each
of the direct summands Ziβ for β ∈ An−1. This comes from taking the projection onto
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the sphere Sn−1
β and using the fact that the homology of the sphere is Z. The map

X(n−1)/X(n−2) → Sn−1
β just crushes all the spheres except the βth one.

The long story is that α gets sent to the sum
∑
cαβ, where cα is the integer that

describes the map iα|∂Dn → Sn−1
β . In particular, cα is just the degree of iα|∂Dn →

Sn−1
β . (This takes a little amount of self-convincing since I am sketching the argument;

Hatcher has a thorough proof.)
In particular, the matrix between

ZAn → ZAn−1

is just the matrix of degrees of the n-attaching maps restricted to Sn−1 and crushed to
the various n− 1 spheres.

15.1 Proposition (Cellular homology). The (β, α)th entry in the matrix of the bound-
ary map ZAn → ZAn−1 is

deg qβiα|∂Dn

where qβ : X(n−1) → Sn−1
β is the βth “crushing.”

§2 Examples

15.2 Example. Let us compute the homology of real projective space RPn. Recall
that this is made from the set of nonzero vectors v ∈ Rn+1 − {0} up to equivalence
v ∼ λv, λ ∈ R∗ under scaling. It is equivalently

Sn/ {x ∼ −x}

since everything can be scaled down to the sphere. So there is a canonical map

Sn → RPn.

The cell structure of RPn has one cell in each dimension from 0 to n. In particular,
RPn is a union D0 ∪D1 ∪D2 ∪ · · · ∪Dn. The reason is that RPn − RPn−1 is a single
disk. Indeed, the collection of classes of RPn represented by (x0, . . . , xn, 0) (where the
last coordinate is zero) is isomorphic to RPn−1. The complement of this, namely the
set of classes of the form

(x0, . . . , xn) ∈ Sn−1 xn 6= 0

is equivalently the set of classes of the form

(x0, . . . , xn−1, xn), xn > 0

This set of classes is homeomorphic to Dn−1 (because the first n − 1 coordinates can
be anything). The cellular complex is all Z as a result.

What are the boundary maps? Well, recall that the top disk is Sn intersected with
the upper half-space. The boundary RPn−1 is the quotient of the boundary Sn−1 on
the plane xn = 0 under the antipodal map. Let ik be the attaching map Dk → RPn
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which sends Dk to the upper half-space of Sk. We need to compute the degrees of ik
restricted to the boundary and crushed

RPk−1/RPk−2 ' Sk−1.

This composition turns out to be best drawn visually, but it is the coproduct

Sk−1 1∨−1→ Sk−1 ∨ Sk−1 → Sk−1.

But, well, the antipodal map has degree (−1)k. Thus the degree is 1 + (−1)k. So it
follows that the cellular chain complex has the boundary maps which are alternatively
zero and multiplication by 2.

It follows that, for n even, H∗(RPn) is Z at zero, Z/2 in odd degrees, and zero
otherwise. (For n odd, there is also a Z in the top degree.)

More generally, one can define the Stiefel manifolds as parameterizing not just
lines (like projective space) but planes.

15.3 Definition. The Stiefel manifold Vn,k parameterizes ordered tuples (v1, . . . , vk) ∈
Rn of orthonormal vectors. Each such element is called a k-frame. There are a bunch
of different (equivalent) ways to give it a topology. We will view it as a coset space of
SO(n). Recall that SO(n) is the set of orthogonal matrices Rn → Rn and determinant
one.

If e1, . . . , en is an orthonormal basis for Rn, then there is a set map

SO(n)→ Vn,k

sending M to
M → (Men,Men−1, . . . ,Men−k+1).

The subgroup SO(n−k) is a subgroup of SO(n) consisting of matrices that fix the last
k vectors ej , j ≥ n− k + 1. In particular, we get a map

SO(n)/SO(n− k)→ Vn,k.

By definition, this map is bijective; we give Vn,k a topology such that this is a homeo-
morphism (where SO(n)/SO(n− k) is given the quotient topology).

15.4 Example. Now Vn,2 is equal the set of pairs of vectors that are orthogonal and
each is norm one, so it is really the subspace of T (Sn−1) where the tangent vector has
length one. The map is (v1, v2) to v1 with tangent v2.

What we showed earlier, the nonexistence of nonvanishing vector fields on even-
dimensional spheres, is that there is no section

Vn,2

��
Sn−1

wwwwwwwww
// Sn−1

This nonexistence of sections has to do with characteristic classes. By calculating the
homology of the Stiefel manifold, we can reprove the earlier result. The thing we will
show is that
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15.5 Proposition. Hn(Vn+1,2) ' Z/2 for n odd.

This will imply that there is no section out of Sn for n even, because there is no
map Z to Z/2 that could complete the above diagram. But, um, we’re out of time
again. So actually we are not going to show this. Sorry about that.

Lecture 16
10/4

In the traditional courses on algebraic topology, you learn your way around real pro-
jective space real good. We want to look at more important spaces. Kirsten said
something about Stiefel manifolds last time, but she didn’t quite finish explaining the
cell structure. Actually, she didn’t start explaining the cell structure. We’re going to
come back to the topic on Wednesday.

What we want to talk about today is the Lefschetz formula.

§1 Lefschetz fixed point formula

There’re lots of variations on this very beautiful idea. Let us start with a simple
situation. Suppose S is a finite set. Let T : S → S be a map. A fixed point is a point
s ∈ S such that T (s) = s. We can try to get a measure of the number of fixed points
in the following way. Let Z {S} be the free abelian group on S. There is a map

T∗ : Z {S} → Z {S}

where the matrix of T∗ is given by how T acts (e.g. a permutation matrix if T is a
bijection).

16.1 Example. Let S = {1, 2, 3} and T swaps (2, 3) while fixes 1. Then the matrix of
T∗ is 1 0 0

0 0 1
0 1 0

 ;

the fixed points correspond to the ones in the diagonal. In particular, we can count
the fixed points of T by counting the ones down the diagonal of the T∗ matrix. That
is, finding the trace of T∗.

| {fixed points} | = tr T∗

The Lefschetz formula generalizes this to spaces. It replaces this map with the map
on homology.

Suppose X has the homotopy type of a finite CW complex. This implies that the
homology groups Hn(X) are finitely generated by cellular homology. They are also
nonzero for only finitely many n.

Let f : X → X be a map. Then it induces a map

f∗ : H∗(X)→ H∗(X)
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and we will define a number, called the Lefschetz number τ(f), which will be a kind
of trace. This is one of those things that’s obvious after someone has told them to you.
You might think that the right thing to do would be to take the trace of the map on
homology. But you actually take the alternating sum.

16.2 Definition. The Lefschetz number τ(f) is

τ(f) =
∞∑
i=0

(−1)iTr(f∗|Hn(X)).

Note that the sum is finite.

Technically, we have to define the trace. We do this now. Let A be a f.g. abelian
group. Let T : A→ A be a homomorphism. Then T induces a map

T : A/Ator → A/Ator.

Note that a f.g. abelian group can be represented as Zr (for r the rank) plus a finite
group. The decomposition is not canonical, but the subgroup Ator is canonical, so the
quotient is canonical. Anyway, the map on the torsion quotients leads to

T : Zr → Zr,

whose trace is defined to be the trace of T .

16.3 Example. If f = 1X , then τ(f) is the Euler characteristic χ(X) =
∑

(−1)irankHi(X).

We’d like a theorem like:

The number of fixed points of f is the Lefschetz number.

We’d like to say that this is true, and we can say that; it’s a free country. But we may
be wrong. And indeed, this is not true. It is actually true that f is always homotopic
to a map with τ(f) fixed points.

We will discuss a special case of this which is useful. The theorem is:

16.4 Theorem. Let K be a finite simplicial complex, and X the underlying space (the
geometric realization). If f : X → X has no fixed points, then

τ(f) = 0.

We will start proving this today. But first, a comment. Note that the Lefschetz
number depends only on the effect in homology. So it depends only on the homotopy
class of f . So if τ(f) 6= 0, then f is not homotopic to a map without fixed points.

16.5 Corollary. If f : X → X satisfies τ(f) 6= 0, then f has a fixed point.
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§2 Simplicial approximation

16.6 Theorem. Let X = |K| is the space underlying a finite simplicial complex K,
and Y = |L| the space underlying another one L. Let f : X → Y be a continuous one.

After sufficient barycentric subdivision of X, f is homotopic to a simplicial map.

A simplicial map is a purely combinatorial map of simplicial complexes, i.e. a map
of vertices that sends simplices into simplices. This leads by linear extension to a map
on the spaces.

We’ll describe the proof of this in the next lecture.

16.7 Corollary. Let X = |K|, K finite. Let f : X → X. If f has no fixed points,
then after sufficient barycentric subdivision of X, f is homotopic to a simplicial map
f̃ which fixes no simplices (of any dimension).

16.8 Example. Take the circle with its simplicial structure (two 0-simplices, two
1-simplices). Then rotation by 90 degrees is not simplicial. However, barycentric
subdivision yields a simplicial map.

OK. We’ll come to grips with all this later. We’ll prove this next time.

§3 Proof of the theorem

For now, assume the simplicial approximation theorem and all that.

Pf of Lefschetz. As usual, X = |K|, and f : X → X. K is finite. f has no fixed points.
The corollary implies that we can subdivide X to get a new finite simplicial complex

X ′ = |K ′|, we may suppose that f is homotopic to a simplicial map f̃ with no fixed
simplices.

To set some notation, let K ′n be the set of n-simplices in K ′. Then f̃ : K ′n → K ′n
has no fixed points. We can use the simplicial chains to compute the homology. So
Csimp
n (X) = Z {K ′n} is the simplicial chain complex. The map

f̃ : Csimp
n (X)→ Csimp

n (X)

has trace zero since f̃ has no fixed points on K ′n. We find that the alternating sum∑
(−1)iTr(f̃∗)|Csimp

i (X)
= 0.

Now we use some algebra.

16.9 Lemma. Let C∗, d be a finite chain complex of finitely generated abelian groups.
Let T : C∗ → C∗ be a chain map. Then∑

(−1)iTrT |Ci =
∑

(−1)iTrT |Hi(C).

Proof. Exercise. (It is in the homework.) N

So you can compute the Lefschetz number either using the chain complex or the
homology. By the algebraic lemma, the Lefschetz number τ(f̃) = 0, so the same is true
for the homotopic map f . N
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(Incidentally, we have used the equivalence of simplicial and singular homology.)

16.10 Example. Let X = Dn, which is the realization of a suitable simplicial complex.
Then any map f : X → X has a fixed point. The reason is that the Lefschetz number
must automatically be one, so the homology is just Z in degree zero and zero everywhere
else. We have proved:

16.11 Theorem (Brouwer fixed point theorem). Let f : Dn → Dn be a continuous
map; then it has a fixed point.

There’s another proof just directly by singular homology. It’s usually done as a
corollary of the computation for the sphere’s homology. The usual argument: if f has
no fixed points, then drawing the ray through f(x), x and intersecting it with Sn−1

gives a retraction Dn → Sn−1. This is impossible since Dn has trivial homology and
Hn−1(Sn−1) = Z.

16.12 Example. Take a torus T2 and map it to itself f : T2 → T2 by flipping it
around the vertical axis. The map has four fixed points. Let’s calculate the Lefschetz
numbers. Then f induces the identity on H0. On H1, we have a group generated by
cycles a, b. If you draw some pictures, you can arrange it so that f sends a to −a and
b goes to −b. So the trace of f on H1 is −2. Moreover, x ∈ X is the top fixed point,
then since H2(X) ' H2(X − x) and f is homotopic to the identity in a neighborhood
D of x, we can compute the Lefschetz number to be 4.

The theorem can often be used to count the number of fixed points.

Lecture 17
[Section] 10/4

Recall that the Stiefel manifold Vk,n is the set of tuples (e1, . . . , ek) ∈ Rn of unit
length vectors which are mutually orthogonal. A priori, this is just a set. However, we
have an inclusion

Vk,n → Sn−1 × · · · × Sn−1,

and we give it the subspace topology.
Another way to give Vk,n a topology is to use the map

SO(n)/SO(n− k)→ Vn,k

and to give Vn,k the quotient topology. (Here SO(n) has a subspace topology as a
subspace of Mn(R).) This map sends a matrix M ∈ SO(n) to

(Me1, . . . ,Mek) ∈ Vn,k.

The elements of SO(n) that fix all these {e1, . . . , ek} are precisely the ones in SO(n−k),
so this map is well-defined.

These two topologies are the same.

56



Lecture 18 Notes on algebraic topology

17.1 Example. If you have a map f : X → Y between CW complexes such that
f∗ : H∗(X) → H∗(Y ) is trivial in all degrees > 0, then is necessarily f homotopic to
the constant map?

The answer is no. An example is the Hopf fibration. Take the 3-sphere S3 ⊂ C2.
There is a natural map C2 → CP1 = S2 sending (z, w)→ [z, w]. We get a map

S3 → S2

which induces zero in homology because the homology groups don’t simultaneously
nonvanish outside dimension zero. However, it is not null-homotopic. We don’t know
enough to prove this though.

There is a proof that sounds reasonable. This map S3 → S2 is a fibration. We
don’t know what this is though. It sort of looks like a covering space. If I take a
point in S2 and takes its preimage in S3, that pre-image is just going to correspond
to a (complex) line in C2, which intersects with S3 in a circle S1. In particular, the
fibers are all homeomorphic to S1. It turns out that many of the properties we know
about covering spaces work for this map as well. In particular, we have the homotopy
lifting property.

If S3 → S2 were homotopic to a constant, then the identity S3 → S3 would be
homotopic to a constant as well by the homotopy lifting property. This is impossible
since the sphere is not contractible.

Lecture 18
10/6

We will talk today about the simplicial approximation theorem.

§1 Simplicial approximation theorem

18.1 Theorem. Let K be a finite simplicial complex and L a simplicial complex.
Suppose given a continuous map

f : |K| → |L|.

After subdividing K, f is homotopic to a simplicial map.

Remark. L is the union of its finite subcomplexes. The image of f is compact, so
its image lands inside some finite subcomplex. As a result, we don’t gain anything by
allowing L to be infinite; we might as well assume that L is finite as well.

Remember that a simplicial complex K is a combinatorial object: has a set K0 of
vertices and for each n, a set Kn of n+ 1-element subsets of K0 called the n-simplices.
Every subset of a simplex is a simplex. This does not mean that every subset of the
geometric realization is a simplex! The point is that a collection of vertices spans a
simplex in the geometric realization, then every subset of that collection does so as
well.

We start with some generalities on simplicial complexes.
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§2 Stars

18.2 Definition. Let σ ∈ Kn be an n-simplex of K. Then we define the star of σ to
be the subset of |K given by:

St(σ) =
⋃

σ′:σ⊂σ′
σ′.

For instance, the star of a vertex v is the collection of all the closed simplices
containing v. Note that not every simplex contained in the star has to contain the
vertex! This is because we allow faces of simplexes in the star to be in the star.

18.3 Definition. The open star of σ is the union

open star(σ) =
⋃
σ⊂σ′

σ′ − ∂σ′.

The open star is an open subset of the star.

18.4 Example. The open star of a vertex v is the collection of points in the realization
|K| which contain v with nonzero coordinate. The open star of a simplex σ which isn’t
a zero-simplex does not contain the simplex, though. (We always have openstar(σ) ⊃
Int(σ).)

18.5 Proposition. The open star openstar(σ) is always an open set containing σ−∂σ.

Proof. One can prove this by checking it for the standard n-simplex. When K is finite,
the realization |K| is a subcomplex of some ∆N (e.g. take N = K0). One checks
that the act of taking the open star commutes with intersections, so the fact that the
open star is open in a standard simplex implies that it is open in any finite simplicial
complex. N

Another fact we will need is:

18.6 Proposition. The collection St(v), v ∈ K0 of stars of vertices is a collection of
subsets of |K| whose interiors cover |K|.

Proof. Indeed, any point x ∈ |K| is in the interior of some simplex, so it is in the open
star of any vertex of that simplex. N

§3 Proof of the simplicial approximation theorem

Let f : |K| → |L| be continuous.

Proof. We can cover |L| by the open stars openstar(v) for v ∈ L0. Choose ε so small
that ε is bigger than the Lebesgue number of the covering of K:

f−1(openstar(v)), v ∈ L0.

We are regarding |K| as a subset of some standard simplex. In particular, |K|
is a metric space. Now subdivide |K| so that the diameter of each simplex in the
subdivision is < ε/2. Call the new simplicial complex K ′. It follows then that f maps
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each simplex in |K ′| into an open star of something in |L|. For each v ∈ K ′0, choose
g(v) ∈ L0 such that

f(v) ∈ openstar(g(v)).

We get a map
g : K ′0 → L0.

I claim that this map extends to a simplicial map |K ′| → |L|. What’s the content
of that? The content is that if a collection v0 . . . vm span a simplex in |K ′|, then
g(v0), . . . , g(vm) span a simplex in L. The proof is fairly simple, but we need a lemma.

18.7 Lemma. In an arbitrary simplicial complex W , vertices w0, . . . , wn span a simplex
of W if and only if ⋂

openstar(vi) 6= ∅.

Proof. We might as well suppose that the vertices are distinct. If they span a simplex,
then the interior of that simplex is in all their stars. Conversely, if

⋂
openstar(vi) is

nonempty, then pick a point in that intersection. The smallest simplex containing it
contains all the vi.

This is “easy.” But if one doesn’t prove it, one might get the statement wrong. N

OK. Now, we have to show that g(v0), . . . , g(vm) spans a simplex in L if v0, . . . , vm
spans a simplex in |K ′|. Let x be in the interior of the simplex containing the {vi}.
Then f(x) is contained in openstar(g(vi)) for each i. This implies that⋂

openstar(g(vi)) 6= ∅.

So g extends to a simplicial map. We now have to construct the homotopy between
f, g. Again, we have two maps

|K ′| f,g→ |L| ⊂ RN .

We can just consider the linear homotopy t → (1 − t)f + tg between f, g. Of course,
one has to check that these linear combinations actually lie in |L| and not simply in
RN . That’s because of the Lebesgue number business. For time constraints, we can’t
actually go through the proof of that.

N

§4 Lefschetz fixed point theorem

Last time there was a mistake. Let’s go back to the Lefschetz fixed point theorem.
Let

|K| f→ |K|

be a continuous endomap of the realization of a finite simplicial complex to itself. We
claimed that if f has no fixed points, then τ(f) = 0.

Suppose f has no fixed points. Put a metric d on |K|. We can choose ε > 0 such
that d(x, f(x)) ≥ ε. We can subdivide |K| so that every open star of a vertex in v has
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diameter < ε. Taking the subdivision doesn’t change the topology of the geometric
realization. So we can just assume that every simplex in K has diameter < ε.

If we subdivide further, we can use simplicial approximation to get a simplicial
map

g : |K ′| → |K|

for K ′ a further subdivision of K, such that g ' f . The thing about the open stars
tells you that every simplex in K ′, which came from a simplex σ in K, gets moved
under g to a simplex which is disjoint from σ. This is because f moves everything a
whole bunch and the simplices are very small.

We now have to check that τ(g) = 0. We have a chain map

C∗(K
′)→ C∗(K)→ C∗(K

′)

thanks to the chain homotopy involving subdivision. With respect to this chain map,
the associated C∗(K

′) → C∗(K
′) associated to g has zeros on the diagonal when rep-

resented as a matrix. So the trace is zero. Thus τ(g) = 0. Alright, sorry. We were
rushing at the end.

Lecture 19
10/8

We now want to add in a bunch of topics that aren’t particularly well represented
in Hatcher’s book. Hatcher is a geometric topologist, but we like algebra, so we will
emphasize some algebra. The first thing to talk about is the tensor product.

§1 Tensor products

Everyone in the class already knows about them, so it is a bit of a review.
Recall that if A,B are abelian groups, then we can define a new group A⊗B which

we can characterize by its mapping properties. A homomorphism

A⊗B → C

is the same thing as a bilinear map

A×B f→ C.

The bilinearity means precisely that

1. f(a1 + a2, b) = f(a1, b) + f(a2, b).

2. f(a, b1 + b2) = f(a, b1) + f(a, b2).

Given this, we can give a definition of A⊗B. This is the quotient of the free abelian
group on generators {a⊗ b, a ∈ A, b ∈ B}modulo the relations (a+a′)⊗b = a⊗b+a′⊗b
and a⊗ (b+ b′) = a⊗ b+ a⊗ b′.

19.1 Definition. A⊗B is called the tensor product of A,B.
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19.2 Example. I can’t resist telling you about this one great example. Consider the
tensor product of abelian groups:

R⊗ R/Z.

Start by considering an element r ⊗ x
y , x, y,∈ Z. If we iterate the rules of the tensor

product, it follows that
na⊗ b = n(a⊗ b),

so that
r ⊗ x

y
= (y

y

r
)⊗ x

y
=
y

r
⊗ x = 0 ∈ R⊗ R/Z.

It follows from this reasoning that R⊗ R/Z ' R⊗ R/Q.
A similar example would show that

Q⊗Q ' Q

under the bilinear multiplication map (x, y)→ xy.

Another really general fact is the tensor product commutes with direct sums.

19.3 Proposition. We have

(
⊕

Aα)⊗B '
⊕

(Aα ⊗B).

Proof. This follows from the universal property of the tensor product. This is also true
in the other variable as well, namely

A⊗
⊕

Bα '
⊕

A⊗Bα.

We leave a lot of these kinds of things to the reader, because they are best thought
through for oneself. N

19.4 Example. Let’s go back to the earlier example. As a Q-vector space, R is
uncountably-dimensional. We have

R '
⊕

uncountable

Q.

So R⊗R/Q is a big sum of Q’s tensored with a big sum of Q’s. Since R/Q is a direct
sum of uncountably many copies of the rationals, R/Q '

⊕
uncountable Q, and we have

R⊗ R/Q '
⊕

uncountable

Q ' R.

Remark. That’s the space where a really beautiful invariant lives. This is called the
Dehn invariant. There was an old problem of scissors congruence. If you take two
polygons in R2, one defines them to be scissors congruent if you can cut the interior
of the first one up to make the other. If two polygons P1, P2 are scissors congruent,
then the areas are obviously the same. The converse is also true. If two polygons bound
the same area, they are scissors congruent.
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As someone pointed out loudly in class, this is not true in three dimensions. One
looks at polyhedra and defines a corresponding notion of scissors congruence. One of
the Hilbert problems was to determine whether there were other invariants for scissors
congruence on polyhedra.

The answer is no. Dehn introduced something called the Dehn invariant. Given
a polyhedron, one defines

D(P ) =
∑

edges e

length(e)⊗ dihedral angle

2π
∈ R⊗ R/Z.

One can check that the Dehn invariant is an invariant of scissors congruence. One
can calculate the Dehn invariant of a cube is zero, because the angles are all rational
multiples of π, while the Dehn invariant of a tetrahedron is nonzero, because the angles
are irrational multiples of π.

§2 Torsion products

I don’t think anyone really says that all the way out.
Tensor products are great, except for the following. Suppose we have a surjective

map
M � N

of abelian groups, and an abelian group A; then

M ⊗A� N ⊗A

is also surjective (check on the generators, for instance). The other relation is false.
Suppose M ↪→ N is a subgroup. It is not necessarily true that A ⊗M → A ⊗ N is
injective.

19.5 Example. Suppose we have the map Z 2
↪→ Z of multiplication by two. Let us

tensor by Z/2. Then we get the map

Z/2 2=0→ Z/2.

This is not injective, because multiplication by two is not injective.

So tensor products don’t preserve exact sequences, in general.
Tensor products are not that far from doing so, though. There is a nice remedy for

its not preserving an exact sequences. Let M be an abelian group, and A an abelian
group. Choose a surjection F1 �M for F free; the kernel F2 is also free abelian. (The
subgroup of a free abelian group is free abelian.) So we have an exact sequence

F2 ↪→ F1 �M.

We have a projective resolution of length two.
Tensor this with A: we get a sequence

A⊗ F2 → A⊗ F1 → A⊗M → 0.

Tensor products commute with cokernels, so this sequence is exact. The kernel of this
sequence is not necessarily zero, though.
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19.6 Definition. The kernel of A⊗ F2 → A⊗ F1 is called Tor(A,M).

Remark. For modules over a ring other than Z, you generally get higher tors.

The point is that the Tor takes care of the lack of exactness. This is best checked
for oneself.

19.7 Proposition. Tor(A,M) is independent of the free resolution of M .

Proof. Remember that any two resolutions of M are chain homotopy equivalent—this
is standard homological algebra. N

19.8 Proposition. Tor(A,M) is symmetric in A,M . In particular, Tor(A,M) '
Tor(M,A).

Proof. Omitted. N

19.9 Example. Let us compute Tor(Z/4,Z/6). We use the resolution

0→ Z 6→ Z→ Z/6→ 0.

Tensor this with Z/4:

Z/4 2→ Z/4→ Z/6⊗ Z/4→ 0.

The kernel is isomorphic to Z/2, so this is the torsion product.

There is an important point next to save for later; there are other things to mention
later.

19.10 Proposition. If M is a torsion-free abelian group, then Tor(A,M) = 0 for any
abelian group A. Moreover, tensoring with M preserves exact sequences.

Proof. To come back to later. N

§3 Homology with coefficients

There is a variation on the theme of homology that turns out to be extremely useful.
It just reorganizes some of the information already done, but the reorganization can
make things less opaque. Let A be an abelian group. X will be a topological space.
Consider the chain complex C∗(X) of X and tensor it everywhere with A. We define

C∗(X,A) = C∗(X)⊗A.

This is a chain complex.

19.11 Definition. The homology groups of this tensored chain complex H∗(C∗(X,A))
are called the homology groups with coefficients in A. We can do this for cellular,
singular, or simplicial chains.

Homology with coefficients satisfies all the same properties of regular homology.
Namely,
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1. Homotopy invariance.

2. Mayer-Vietoris

3. Excision

These are the analogous properties as in ordinary homology. These are actually all easy
to prove. The homotopy invariance was an explicit chain homotopy, which you can just
tensor with A. There is nothing deep there. Mayer-Vietoris and excision are really the
same statement: the local nature of homology, namely the idea that homology depends
only on small chains.

19.12 Example. Let us deduce excision for homology with coefficients. Recall that
we deduced this from the short exact sequence

C∗(U ∩ V ) ↪→ C∗(U)⊕ C∗(V )� CA
∗ (X) ⊂ C∗(X)

such that the last inclusion was a chain homotopy equivalence.
But every one of these things was a free abelian group. So it follows from the

previous proposition that when you tensor this with A, you still get a short exact
sequence

C∗(U ∩ V )⊗A ↪→ (C∗(U)⊕ C∗(V ))⊗A� CA
∗ (X)⊗A.

The last thing is still chain homotopic to C∗(X)⊗A because you just tensor the chain
homotopy with A.

The key point to note here is that the preservation of exactness in this case does
happen precisely because we are working with free abelian groups.

19.13 Example. Let us look at H∗(RPn,Z/2). We can compute this via the cellular
chain complex (with the standard CW structure on RPn), which we recall was a bunch
of Z’s such that the maps are either 2 or zero. When you tensor this with Z/2, you get
a cellular chain complex of copies of Z/2 where all the maps are zero. In particular, all
the homology groups of real projective space with coefficients in Z/2 are just Z/2, i.e.

H∗(RPn,Z/2) ' Z/2 for 0 ≤ ∗ ≤ n.

The homology is still zero in higher dimensions. This is nice. There is less to remember.

§4 A loose end: the trace on a f.g. abelian group

There was something to mention that came up the problem set. If A is a f.g. abelian
group, then A looks like Ator ⊕ Zr for some r. Note that

A⊗Q ' Ator ⊗Q⊕Qr.

However, Ator ⊗Q ' 0 because if a ∈ A satisfies na = 0, then

a⊗ x = na⊗ n

x
= 0 ∈ Ator ⊗Q.
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We find that A⊗Q ' Qr. Suppose we have a map

f : A→ A.

We defined the trace of f to be the trace of the induced map f on A/Ator → A/Ator.
This, however, can be a mess.

The point is that we could have also defined the trace of f to be the trace on the

map A⊗Q f⊗1→ A⊗Q in the sense of linear algebra. These are the same.

Lecture 20
10/11 [Section]

§1 Problems

Here is a hint for problem number 6:

20.1 Exercise. Consider the configuration space C of pairs of distinct points in Rn,
which is the quotient of Rn × Rn −∆ modulo the identification (x, y) ∼ (y, x).

Solution. We have a linear map f : Rn × Rn → Rn × Rn sending a point (x, y) →
(x+ y, x− y). It sort of descends to the quotient. In particular, it becomes a map

Rn × (Rn − 0)/((x, y) ∼ (x,−y))→ C.

This is the hint.
Note that C is not homeomorphic to the set of pairs (x, y) such that x < y in the

lexicographic ordering. The lexicographic ordering is not continuous.

§2 The Riemann-Hurwitz formula

Let f(x, y, z) be a homogeneous polynomial of degree d. So f(x, y, z) ∈ C[x, y, z]. Then
the zero locus V (f) ⊂ CP2. This is some closed subset. Suppose, moreover, that f is
nonsingular, so V (f) is a manifold. What is its genus?

Someone suggested that one can use the “arithmetic genus,” but we don’t need to
talk about all that.

We have a map V (f)→ CP1 obtained by projection from a point P /∈ V (f). Now
CP1 = S2. So we have a map

M → S2.

Since a random line will intersect V (f) in d points generally, we know that the generic
inverse image of a point in S2 has d points.

More generally:

Suppose f : M → N is a mapping of manifolds which has degree d preim-
ages most of the time (except outside a finite subset). What’s the relation
between χ(M), χ(N), and d?

Let Q = card {points where f fails to have degree d}, where N is counted with
multiplicities.

Then, with the above notation:
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20.2 Proposition (Riemann-Hurwitz formula). χ(M) = dχ(N)−Q.

Proof. We can use the simplicial approximation theorem talked about in class. First,
we can approximate this map so it is a simplicial map. Then we can further subdivide
our simplices such that all the points where f fails to have degree d are zero-simplices.
Every k-cell in N is going to show up d times in M except in the case k = 0 when one
has a point among the Q bad points. From this, one can get the formula.

There is a point that the subdivided map might not have the same condition of
generically d preimages. But we’ll avoid that point for the moment. N

The minus n is sometimes written as −
∑

(eP−1), which is the same thing as saying
“compute with multiplicity.”

Let us now apply this to the case of V (f)→ CP1. We find that

χ(V (f)) = dχ(S2)−Q.

What’s Q? We reduce to the question:

Given a homogeneous polynomial in x, y of degree d, for how many y does
the polynomial have a multiple root?

To do this, we find the discriminant, which is a polynomial in y of degree d(d− 1). For
a generic polynomial, we find that the number of y’s is d(d − 1). Thus for a generic
nonsingular polynomial, we find

χ(V (f)) = d− 2− d(d− 1).

Since the genus is (2− χ)/2, we compute that the genus of V (f) is
(
d−1

2

)
.

§3 Cellular homology

If we have two CW complexes X,Y and a map f : X → Y , we say that f is cellular
if f(X(n)) ⊂ Y (n) for each n. If we have a cellular map, it induces a map in cellular

homology. Given a cell eαn ∈ X and a cell eβn ∈ Y , we consider the map

eαn → X(n) → Y (n) → Snβ

obtained by collapsing everything in Y (n) other than eβn to a point. This induces a map
Sαn → Sβn . Taking the multiplicities lets you define the image of the class of eαn as a
sum of eβn’s with multiplicities corresponding to the degrees.

20.3 Theorem (Cellular approximation theorem). Any map f : X → Y between CW
complexes is homotopic to a simplicial map.

Proof. It’s kind of a pain. N

As an application of this, we can show that

πn(Sm) = 0
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if n < m. Indeed, any map is homotopic to a cellular map, and a cellular map Sn → Sm

must be a constant map (if we use cell structure on Sn, Sm with a cell in zero dimensions
and a cell in the highest dimension).

You can also prove that
πn(Sn) ' Z

in general. After this, homotopy groups get extremely complicated, which is why we’re
doing homology first.

20.4 Example. π3(S2) ' Z. This is generated by the Hopf fibration. One can prove
this by the long exact sequence of a fibration.

§4 Tensor products

The universal property of a tensor product is as follows. Suppose V,W are modules
over a ring R. If you want, you can think of R as a field, but we’re going to call it R.
Then we say that V ⊗W is something which satisfies the following universal property.

There is a bilinear map
V ×W → V ⊗W

such that for any module X and bilinear map V ×W → X, there exists a
unique map V ⊗W → X making the diagram

V ×W //

&&LLLLLLLLLL V ⊗W

��
X.

The uniqueness of the object V ⊗W follows from general nonsense. Existence is not
so trivial, though.

We have to actually construct a tensor product. There are several ways to do this.
The most comprehensible way is to define V ⊗W to be the free R-module generated
by symbols v ⊗ w, v ∈ V,w ∈W quotiented by the relations

v1 ⊗ w + v2 ⊗ w = (v1 + v2)⊗ w

v ⊗ w1 + v ⊗ w2 = v ⊗ (w1 + w2)

and
r(v ⊗ w) = (rv ⊗ w) = v ⊗ rw.

Lecture 21
10/13

We’re going to deviate from Hatcher for a while. The natural follow-up as in Hatcher
would be talk about cup products and cohomology. However, we are going to talk
about categories.
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§1 Categories

Categories are supposed to be places where mathematical objects live.

21.1 Definition. A category C consists of a collection of objects, obC, and for each
pair of objects X,Y ∈ obC, a set of morphisms C(X,Y ).

For each object X ∈ obC, there is an identity morphism 1 ∈ C(X,X). Next,
there is a composition law C(X,Y ) × C(Y,Z) → C(X,Z), (g, f) → g ◦ f for every
triple X,Y, Z of objects, which is unital and associative.

We write X → Y to denote an element of C(X,Y ).

C is the storehouse for mathematical objects: groups, Lie algebras, rings, etc.

Remark. Some people use Hom(X,Y ) to denote the set of morphisms between X,Y .

Remark. When we write X ∈ C, it means X ∈ obC. This is a convenient convention.

Remark. The objects don’t have to form a set; they can be large. But the things
C(X,Y ) are sets.

Now, we do a bunch of examples.

21.2 Example. 1. C = Sets; the objects are sets, and the morphisms are maps of
sets.

2. C = Grps; the objects are groups, and the morphisms are maps of groups (i.e.
homomorphisms).

3. C = LieAlg; the objects are Lie algebras, and the morphisms are maps of Lie
algebras (i.e. homomorphisms).

There is nothing in the language of categories that lets you look inside an object.
We think of vector spaces having elements, spaces having points, etc. Categories treat
these kinds of things as invisible. There is nothing “inside” of X ∈ C. The only way
to understand X is to understand the homs into and out of X.

We will elaborate on this in the future.

21.3 Example. Let G be a finite group. Then we an make a category BG where the
objects just consist of one point ∗ and the maps ∗ → ∗ are the elements of G. The
identity is the identity of G and composition is multiplication in the group.

In this case, the category doesn’t represent so much of a class of objects, but
instead we think of the composition law as the key thing. So a group is a special kind
of category.

21.4 Example. A monoid is precisely a category with one object. Recall that a
monoid has an associative and unital multiplication (not necessarily inverses).

Figures... ADD THEM

Remark. A lot of people said that they’ve seen this before in commutative algebra,
but not necessarily thoroughly. So we will keep talking about this.

68



Lecture 21 Notes on algebraic topology

§2 Functors

Let C,D be categories.

21.5 Definition. A functor F : C → D consists of a function F : obC → obD and, for
each pair X,Y ∈ C, a map F : C(X,Y ) → D(FX,FY ), which preserves the identity
maps and composition.

21.6 Example. There is a functor from Sets → AbelianGrp sending a set S to a
free abelian group on the set.

21.7 Example. There is a functor from TopSpaces → GradedAbGrp (categories
of topological spaces and graded abelian groups) sending a space X to its homology
groups H∗(X). We know that given a map of spaces, we get a map of graded abelian
groups.

21.8 Example. What is a functor BG → Sets? Here BG is the category alluded to
above.

The unique object ∗ goes to some set X. For each element g ∈ G, we get a map
g : ∗ → ∗ and thus a map X → X. This is supposed to preserve the composition law
(which in G is just multiplication), as well as identities.

In particular, we get maps iG : X → X corresponding to each g ∈ G, such that the
following diagram commutes:

X
ig1 //
ig1g2

  A
AA

AA
AA

A X

ig2
��
X

So a functor BG → Sets is just a left G-action on a set X.

“I never liked the idea of left and right action. What about aliens on another planet
that didn’t have left and right hands?”

Sometimes these are called covariant functors. Indeed:

21.9 Definition. A contravariant functor from C F→ D is similar data except that
now a map X → Y now goes to a map FY → FX. Composites are required to be
preserved, albeit in the other direction.

“The reason we have shiny objects in nature is so that we will think of contravariant
functors. If you look in a mirror, it’s like applying a contravariant functor to yourself.
This is kind of a myopic view of mankind.”

As you might guess:

21.10 Example. A contravariant functor from BG to Sets corresponds to a set with
a right G-action.

We will, in a week or so, define a contravariant version of homology when we start
studying cohomology.

21.11 Example. On the category Vect of vector spaces, we have the contravariant
functor

V → V ∗.
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21.12 Example. If we map BG → BG sending ∗ → ∗ and g → g−1, we get a con-
travariant functor.

There is room, nevertheless, for something else. You could have something that
sent an object to a map. This is, I think, the reason for Maclane and Eilenberg to
describe the next property.

§3 Natural transformations

The original paper of Eilenberg and Maclane was called “On a general theory of natural
transformations.” Maclane was a great guy, incidentally, besides inventing homological
algebra; there was a picture in his office of someone holding a ray gun like a sci-fi movie
yelling Tor, Tor, Tor.

Suppose F,G : C → D are functors.

21.13 Definition. A natural transformation T : F → G consists of the following
data. For each X ∈ C, there is a morphism TX : FX → GX satisfying the following
condition. Whenever f : X → Y is a morphism, the following diagram must commute:

FX

TX
��

// FY

TY
��

GX // GY

.

When we say that things are “natural” in the future, we will mean that the trans-
formation between functors is natural in this sense.

21.14 Example. The connecting homomorphism Hn(X,A) → Hn−1(A) is natu-
ral. This is going to be a little rocky, but let’s say what this means.

If we have pairs (X,A)→ (Y,B), then the following diagram commutes

Hn(X,A)

��

// Hn−1(A)

��
Hn(Y,B) // Hn−1(B)

.

This identity is very important in the axiomatic characterization of homology, due to
Eilenberg-Steenrod.

This is a little funny, and one has to think about which category we’re talking
about. We can use the category of pairs of topological spaces. So the objects here
are pairs (X,A) and morphisms are morphisms of pairs.

Remark. “I’m here to put the ’funk’ in functor.” (Dick Gross came in to say hello.)

Some people don’t like this. They don’t like to use the language of categories. If
you really try to go in and examine things, it can be hard to figure out what things
really mean. However, we will use it to state theorems conveniently.

21.15 Exercise. Work this out for yourselves. Suppose you have two functors BG →
Sets, i.e. G-sets. What’s a natural transformation between them?
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Now I want to prove a theorem.

21.16 Theorem. If f : X → Y is a map in C, and F : C → D is a functor, then
F (f) : FX → FY is an isomorphism.

This is going to have a really stupid proof, but there is an important point lurking
here.

21.17 Example. Let C be the homotopy category of topological spaces hoT. The
objects are topological spaces and the morphisms between X,Y are the continuous
maps X → Y modulo the relation of being homotopic. Homology is actually a functor
from hoT to the category of graded abelian groups.

An isomorphism in hoT is a homotopy equivalence, by definition. We thus see:

21.18 Corollary. A homotopy equivalence induces isomorphisms in homology.

It is, incidentally, harder to show that the same is true for the fundamental group.
Note that the argument is made very slick and convenient by the above theorem.
We don’t have to think about cycles or boundaries. Because of the generality of the
theorem, we have no choice but to give a slick proof. We can’t talk about one-to-one
and onto maps are.

Hold on. Wait a second. Do we even know what an isomorphism in a category even
is? No, we don’t.

21.19 Definition. An isomorphism between objects X,Y in a category C is a map
f : X → Y such that there exists g : Y → X with

g ◦ f = 1X , f ◦ g = 1Y .

This is more correct than the idea of being one-to-one and onto. A bijection of
topological spaces is not necessarily a homeomorphism.

Proof. If we have maps f : X → Y and g : Y → X such that the composites both ways
are identities, then we can apply the functor F to the whole dog and pony show, and
we find that since

f ◦ g = 1Y , g ◦ f = 1X ,

that
F (f) ◦ F (g) = 1F (Y ), F (g) ◦ F (f) = 1F (X).

We have used the fact that functors preserve composition and identities. This implies
that F (f) is an isomorphism. N

Categories have a way of making things so general that they’re trivial. Hence, it
is called general abstract nonsense. The things that become meaningful in category
theory are not the proofs. They are the definitions. What we just did is very much
in the spirit I was describing of categories. The notion of isomorphism was defined
in terms of properties of maps, not in terms of things intrinsic (like injections and
surjections).

What’s important here is not the theorem, but the definition of an isomorphism.
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Lecture 22
10/15

Someone asked where to learn about categories. There is a standard reference by
Saunders Maclane, called Categories for the working mathematician. It’s a nice book—
thin. But going in and learning about category theory is a slippery slope. It’s kind of
interesting, and you can spend a lot of time doing it.

A lot of it for this course, though, is just getting used to the language and the
definitions.

Last time, we introduced the idea of a category, and showed that a functor takes
isomorphisms to isomorphisms. This was an amazing result with a trivial proof. Today,
we will characterize objects in terms of maps.

§1 Initial and terminal objects

22.1 Definition. Let C be a category. An initial object in a category is an object
X ∈ C with the property that C(X,Y ) has one element for all Y ∈ C.

So there is a unique map out of X into each Y ∈ C.

22.2 Example. If C is Sets, then the empty set ∅ is an initial object. The empty set
is the set for indecisive people. To map out of the indecisive set, you never have to
decide where anything goes—it just goes. There is a unique map from the empty set
into any other set.

It seems too abstract to be useful. But it is.
There is a dual notion, called a terminal object, where every object can map into

it in precisely one way.

22.3 Definition. A terminal object in a category C is an object Y ∈ C such that
C(X,Y ) = ∗ for each X ∈ C.

22.4 Example. The one point set is a terminal object in Sets.

The important thing about the next “theorems” is the conceptual framework.

22.5 Theorem. Any two initial (resp. terminal) objects in C are isomorphic by a
unique isomorphism.

Proof. The proof is really easy. We do it for terminal objects. Say Y, Y ′ are terminal
objects. Then C(Y, Y ′) and C(Y ′, Y ) are one point sets. So there are unique maps Y →
Y ′, Y ′ → Y , whose composites must be the identities: we know that C(Y, Y ), C(Y ′, Y ′)
are one-point sets. This means that the maps Y → Y ′, Y ′ → Y are isomorphisms. N

There is a philosophical point to be made here. We have characterized an object
uniquely in terms of mapping properties. We have characterized it uniquely up to
unique isomorphism, which is really the best you can do in mathematics. Two sets
aren’t generally the “same,” but they may be isomorphism up to unique isomorphism.
Like the sets of your father and Darth Vader: they’re different (unless you’re Luke),
but the sets are isomorphic up to unique isomorphism.
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Now we’re going to talk about a bunch of other examples, which can all be phrased
via initial or terminal objects in some weird category. This, therefore, is the proof for
everything we will do today.

Say we have a diagram

A

��

// B

��
C // X

.

We can say what it means for this to be a push-out.

22.6 Definition. A square like this,

A

��

// B

��
C // X

.

is a pushout square (and X is called the push-out) if, given a diagram

A //

��

B

��

C

  @
@@

@@
@@

Y

there is a unique map X → Y making the diagram

A //

��

B

��
C

  @
@@

@@
@@

@
// X

��
Y

.

22.7 Example. The following is a pushout square in the category of abelian groups:

Z/2 //

��

Z/4

��
Z/6 // Z/12

.

In the category of groups, the push-out is actually SL2(Z)—this is a cool theorem. The
point is that being a push-out is actually dependent on the category.

22.8 Proposition. If the push-out of

A

��

// B

C
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exists, it is unique up to unique isomorphism.

Proof. We can prove this in two ways. One is that suppose I had two pushout squares

A

��

// B

��

��1
11

11
11

11
11

11
11

C //

''PPPPPPPPPPPPPPP X

X ′

.

Then there are unique maps X → X ′, X ′ → X from the universal property, which have
to be isomorphisms.

Alternatively, we can phrase push-outs in terms of initial objects. We could con-
sider the category of all cartesian diagrams as above with A,B,C and mapping into
something else; then the initial object in this category is the push-out. N

Now we abstract on this idea further.

§2 Colimits

We now want to generalize the push-out. Instead of a shape with A,B,C, we do
something more general.

Start with a small category I: this is not meant in a pejorative sense, but that the
objects of I form a set. What you’re supposed to picture is that I is something like
the category

∗

��

// ∗

∗
or the category

∗⇒ ∗.

We will formulate the notion of a colimit which will specialize to the push-out when
I is the first case. I is to be called the indexing category.

So we will look at functors
F : I → C,

which in the case of the three-element category, will just correspond to diagrams

A

��

// B

C

.
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We will call a cone on F (this is an ambiguous term) an object X ∈ C equip’d6 with
maps Fi → X,∀i ∈ I such that for all maps i→ i′ ∈ I, the diagram below commutes:

Fi

��

// X

Fi′

>>}}}}}}}}

.

An example would be a cone on the three-element category above: then this is just
a commutative diagram

A //

��

B

��
C // D

.

22.9 Definition. The colimit of the diagram F : I → C, written as colimF or colimIF
or lim−→I

F , if it exists, is a cone F → X with the property that if F → Y is any other
cone, then there is a unique map X → Y making the diagram

F

  @
@@

@@
@@

@
// X

��
Y

commute. (This means that the corresponding diagram with Fi replacing F commutes
for each i ∈ I.)

We could think of some weird category where cones are objects and the colimit is
initial. In any case, we see:

22.10 Proposition. colimF , if it exists, is unique up to unique isomorphism.

Let us go through some examples. We already looked at push-outs.

22.11 Example. Consider the category I described by

∗, ∗, ∗, ∗.

A functor F : I → Sets is just a list of four sets A,B,C,D. The colimit is just the
disjoint union A tB t C tD. This is the universal property of the disjoint union. To
hom out of the disjoint union is the same thing as homming out of each piece.

22.12 Example. Suppose we had the same category I but we went into abelian groups.
Then F corresponds, again, to a list of four abelian groups. The colimit is the direct
sum. Again, the direct sum is characterized by the same universal property.

22.13 Example. Suppose we had the same I (∗, ∗, ∗, ∗) but the category of groups
was C. Then the colimit is the free product of the four groups.

6Imagine I wrote that with an English accent.
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22.14 Example. Suppose we had the same I and the category C was of commutative
rings with unit. Then the colimit is the tensor product.

So the idea unifies a whole bunch of constructions.
Now let us take a different example.

22.15 Example. Take
I = ∗⇒ ∗.

So a functor I → Sets is a diagram

A⇒ B.

Call the two maps f, g : A → B. To get the colimit, we take B and mod out by the
equivalence relation generated by f(a) ∼ g(a). To hom out of this is the same thing as
homming out of B such that the pullbacks to A are the same.

This is the relation generated as above, not just as above. It can get tricky.

22.16 Definition. When I is just a bunch of points ∗, ∗, ∗, . . . with no nonidentity
morphisms, then the colimit over I is called the coproduct.

We use the coproduct to mean things like direct sums, disjoint unions, and tensor
products.

22.17 Definition. When I is ∗⇒ ∗, the colimit is called the coequalizer.

22.18 Theorem. If C has all coproducts and coequalizers, then it has all colimits.

Proof. Exercise. It’s not too hard, but it is—I don’t know, I’ll talk about it on Monday.
It’s worth racking your brain over. N

One of the reasons I talked about colimits is that we can talk about it in class and
use the language. Also, there are a lot of examples we haven’t done in class as we
haven’t studied filtered colimits.

§3 Filtered colimits

These are really useful, especially in algebraic topology. These are colimits over special
I.

22.19 Definition. An indexing category is filtered if the following hold:

1. Given i0, i1 ∈ I, there is a third object i ∈ I such that both i0, i1 map into i.

2. Given any two maps i0 ⇒ i1, there exists i and i1 → i such that the two maps
i0 ⇒ i are equal. Any two ways of pushing an object into another can be made
into the same eventually.

22.20 Example. If I is the category

∗ → ∗ → ∗ → . . . ,

i.e. the category generated by the poset Z≥0, then that is filtered.
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22.21 Example. If G is a torsion-free abelian group, the category I of finitely gener-
ated subgroups of G and inclusion maps is filtered. We don’t actually need the lack of
torsion.

22.22 Definition. Colimts over a filtered category are called filtered colimits.

22.23 Example. Any torsion-free abelian group is the filtered colimit of its finitely
generated subgroups, which are free abelian groups.

This gives a simple approach for showing that a torsion-free abelian group is flat.

22.24 Proposition. If I is filtered7 and C = Sets,Abgrp,Grps, etc., and F : I → C
is a functor, then colimIF exists and is given by the disjoint union of Fi, i ∈ I modulo
the relation x ∈ Fi is equivalent to x′ ∈ Fi′ if x maps to x′ under Fi → Fi′. This is
already an equivalence relation.

The fact that the relation given above is transitive uses the filtering of the indexing
set. Otherwise, we would need to use the relation generated by it.

22.25 Example. Take Q. This is the filtered colimit of the free submodules Z(1/n).
Alternatively, choose a sequence of numbers m1,m2, . . . , such that for all p, n, we

have pn | mi for i� 0. Then we have a sequence of maps

Z m1→ Z m2→ Z→ . . . .

The colimit of this is Q. There is a quick way of seeing this, which is left to the reader.

Lecture 23
10/18

§1 Filtered colimits

Last time, we talked about something called filtered colimits. In this, we had a special
property of the indexing category I. It had the property that given any two i0, i1 ∈ I,
there was a third one into which they mapped; moreover, given any two maps i0 ⇒ i1,
there was a third one which coequalized them. Filtered colimits were defined as colimits
over a filtered category.

When we have a functor F : I → Sets,Grps,Modules taking values in a “nice”
category (e.g. the category of sets, modules, etc.), you can construct the colimit by
taking the union of the Fi, i ∈ I and quotienting by the equivalence relation x ∈ Fi ∼
x′ ∈ Fi′ if f : i→ i′ sends x into x′. This is already an equivalence relation, as one can
check.

Another way of saying this is that we have the disjoint union of the Fi modulo the
relation that a ∈ Fi and b ∈ Fi′ are equivalent if and only if there is a later i′′ with
maps i→ i′′, i′ → i′′ such that a, b both map to the same thing in Fi′′ .

Suppose F : I → Ch is a functor from a filtered category I to the category of
chain complexes. For instance, I could be the category ∗ → ∗ → ∗ → . . . , leading to a

7Some people say filtering.

77



Lecture 23 Notes on algebraic topology

sequence of chain complexes C
(0)
∗ → C

(1)
∗ → . . . . This is the standard example you’re

supposed to keep in mind.
Then:

23.1 Proposition. The homology of the colimit lim−→I
F is the colimit of the homologies

H(Fi)i∈F .

Proof. This is easy to prove. The deep idea is the formulation, not the proof.
We will first prove that the natural map

colimI(H∗F )→ H∗colimIF

is onto. Suppose we have something in H∗(colimF ). Then this element x is represented
by a n-cycle z in (colimIF )n for some n. The colimit (colimIF )n is just t(Fi)n modulo
the equivalence relation. So z is represented by some z′ ∈ (Fi)n. We don’t, a priori,
know that z′ is a cycle, i.e. that dz′ = 0. If this were the case, then we would have a
class in colimI(H∗F ) mapping onto x.

However, dz′ does go to zero in the colimit colimIF as z′ is a cycle in this colimit.
Because it is filtered, we know that there is a map f : i→ i′ such that dz′ goes to zero
in i′. In Fi′ , z

′ becomes a cycle. So the homology class of x is in the image of Hn(Fi′),
which maps into the colimit colimIHn(Fi), which in turn maps into the homology of
the colimit. We have thus seen that

colimIHn(Fi)→ Hn(colimIFi)

is surjective.
Now let us prove that it is one-to-one. Suppose x ∈ colimIHn(F ) goes to zero in

the homology of the colimit colimIF . So x is represented by some cycle z ∈ Zn(Fi). In
the colimit colimIF , x is a boundary x = dy. There is thus y ∈ Fi′ representing y. By
pushing forward into some mutually larger i′′, we might as well suppose that x = dy in
Fi itself. This means that x was zero in Hn(Fi) itself. N

I hope that made sense. If it didn’t, it’s one of those things that’s more complicated
when you say it out loud than when you think it through for yourself. I can’t remember
whether this was in Hatcher or not. But then you’ll just get what I said here in a less
entertaining way. I find these kinds of things hard to digest when someone is standing
there telling it to me.

But anyway, this is one of the main uses of filtered colimits—or directed colimits,
as some people say.

§2 Colimits and the singular chain complex

There is a very serious reason for wanting these.

23.2 Proposition. Suppose I is filtered and F : I → HSpaces is a functor (to the
category of Hausdorff topological spaces) with the property that every map Fi → Fi′ is
a closed inclusion.
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Then the obvious map

colimIC∗Fi → C∗(colimIFi)

is an isomorphism.

Just to be clear, the “obvious” map colimIC∗(Fi)→ C∗(colimIFi) can be explained
as follows. Suppose we have functors

J
F→ C G→ D.

Then we have natural maps Fj → colimJFj (assuming the colimit exists), so when we
apply G, we get maps

G(Fj)→ G(colimJFj).

Taking the colimit, we get a natural map

colimJGFj → G(colimJFj).

23.3 Example. X might be a CW complex, and I might be the category with objects
the finite subcomplexes and inclusion maps. This is obviously a filtered category, and
there is an obvious functor I → Spaces since I was a subcategory of Spaces. X is
the colimit of this functor.

We learn that
C∗(X) = colimIC∗(XI)

which implies that the homology of X is the colimit of the homology of the
finite subcomplexes. We will come back to giving applications of that.

Proof. We will give the proof while assuming that the indexing category is

1→ 2→ 3→ . . . .

The general one is very similar, but I didn’t get a chance to think through it before I
came in today. We can leave the little tiny modifications to be made in general to the
reader.

So we have a sequence of closed inclusions of topological spaces

X1 ⊂ X2 ⊂ . . . ,

and X is the union
⋃
Xi with the weak topology. We now have to show the following

classic lemma in point-set topology, which will imply the result:

23.4 Lemma. Any map ∆k → X factors through Xn for some n.

This isn’t special to ∆k; we just need a compact Hausdorff space.

Proof. We have to do something that results in a ridiculous statement—a contradiction,
not just something goofy.

Let K = f(∆k), which is a compact subset of X. Choose sn ∈ K −Xn for each n.
We write S = {sn} ⊂ X. I claim that S is discrete. For this we must show that any

79



Lecture 24 Notes on algebraic topology

subset S′ ⊂ S is closed. But S′ ∩ Xn is finite for each n, hence closed—since we are
using the fact that each Xn is Hausdorff. Thus S′ is closed. This is a property of the
topology on the colimit.

We have now seen that S is discrete, which is a contradiction, as it is a subspace of
the compact space K. N

Remark. There’s a nice category-theoretic way of talking about this. Consider the
Sierpinski space D = {0, 1} with the topology that {0} is closed but {1} is not. The
closure of {1} is thus the whole space D. The important thing about the Sierpinski
space is that the set of continuous maps X → D is in bijection with the set of closed
subspaces of X. (If F ⊂ X is closed, we send X → D by sending F to 0 and X − F
to 1.) You say that the functor associating a space to its set of closed subspaces is
represented by the Sierpinski space.

Suppose X = colimXi, so to give a closed subspace of X is to give a continuous
function X → D. That’s the same thing as giving a set of compatible maps Xi → D.
In other words, a collection of compatible closed subspaces of Xi. If you think through
what this means, it says that a subspace of X is closed if and only if the intersection
with each Xi is closed.

N

Here is an example:

23.5 Proposition. Suppose X is a CW complex. Let X(n) be the n-skeleton. Then
the natural map

Hn(X(n+1))→ Hn(X)

is an isomorphism.

Proof. For instance, use the long exact sequence

· · · → Hn+1(X(n+2), X(n+1))→ Hn(X(n+1))→ Hn(X(n+2))→ Hn(X(n+2), X(n+1))→ . . . .

The two ends are zero because those are the homologies of n + 2-spheres. More gen-
erally, we learn that the maps Hn(X(n+1)) → Hn(X(n+2)) → Hn(X(n+3)) → . . . are
all isomorphisms. The colimit is just therefore Hn(X(n+1)). However, the previous
arguments imply that the colimit is just Hn(X). N

23.6 Corollary. Cellular homology works for arbitrary CW complexes, not just finite-
dimensional ones.

Lecture 24
[Section] 10/18

The key observation made in class is that any diagram of the form

X //

  A
AA

AA
AA

Y

��
Z
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can be interpreted as a functor from a suitable diagram category. A cone on a functor
F : I → C can be defined as a collection of maps Fi→ Z. There is a category of cones
one can define, and in this category, the initial object is the colimit.

Colimits don’t have to exist.

Remark. Given a functor F : I → C where C has a terminal object, you can always
consider the trivial cone over the functor mapping each object Fi, i ∈ I into the terminal
object.

For limits, one reverses the arrows and defines a co-cone over a functor and considers
the terminal object in the category of co-cones.

As we saw in class, given a functor G, we can always define a natural map

G(colimIF )→ colimIGF.

Here is an example. Given the category J : ∗ → ∗, a functor J → Top is just a
morphism X → Y . A colimit of this X → Y is just a space (the cone) CF with maps

X → CF , Y → CF .

If G is a functor from Top to some other category, we have a commutative diagram

G(X)

$$I
IIIIIIII

// G(Y )

zzuuuuuuuuu

G(CF )

::uuuuuuuuu

From this, we get a map from this cone into the universal cone CGF over CG(X)→
CG(Y ). In particular, we get a map

G(CF )→ CGF .

Lecture 25
10/20

First, an announcement. There won’t be a problem set for next week. If you feel like
you’re being cheated, I’ll give you a dollar back from your tuition.

Today, we will talk about the Eilenberg-Steenrod axioms and start cohomology.
However, we won’t have gotten far enough to have a problem set.

§1 Eilenberg-Steenrod axioms

There are a lot of ways of formulating this. But let us start by writing out a bunch of
properties of homology.

Suppose we have a collection of functors h∗ = {hn, n ∈ Z} which go from CW
complexes to abelian groups. The motivating example will be reduced homology
H̃∗. Here are the properties we care about:
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1. h∗ is a functor (or a collection of functors) on the category of CW complexes and
continuous maps.

2. h∗ is homotopy invariant. Given two homotopic maps f, g : X ⇒ Y , the induced
maps h∗(X)⇒ h∗(Y ) are the same. In particular, h∗ is a functor on the homotopy
category.

3. If A ⊂ X is a subcomplex, there is a long exact sequence

hn(A)→ hn(X)→ hn(X/A)→ hn−1(A)→ . . .

in the functors hn. We want this long exact sequence to be natural, so the
connecting map hn(X/A)→ hn−1(A) is a natural transformation. In particular,
if (X,A)→ (Y,B), the diagram

hn(X/A) //

��

hn−1(A)

��
hn(Y/B) // hn−1(B)

commutes.

4. If Y is an infinite wedge8 ∨Yα of pointed spaces Yα, then h∗(Y ) '
⊕
h∗(Yα).

This is only of interest for an infinite wedge.

5. h∗(S
0) = Z when n = 0 and zero otherwise.

The big theorem is:

25.1 Theorem. If h satisfies these properties, then h is naturally isomorphic to reduced
homology H̃∗.

I.e., the properties we’ve studied actually determine homology. Everything you
need to calculate about homology can be done using these properties, not going back
to the definition of singular chains and whatnot.

We will give a partial proof of this.

Remark. We could modify this by requiring that hn(S0) = M for n = 0 and zero
otherwise, whereM is an abelian group. We will then find that h is naturally isomorphic
to singular homology with coefficients in M .

The last property is perhaps the weirdest. It isn’t a general property. People
eventually began to study functors satisfying the first four conditions but not the fifth.

25.2 Definition. A functor satisfying the above properties but the last one is called
a generalized cohomology theory.

8The wedge is what happens when you glue two pointed spaces on the basepoints. It is the coproduct
in the category of pointed spaces.
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§2 Sketch of proof

The idea is that there is just enough structure to show that h∗(X) can be calculated
by the cellular chain complex.

Axiom 3 and axiom 4 imply that the homology commutes with filtered colimits.
This is simple, but requires some setting up. I suggest you accept this for now.

We now mention:

25.3 Lemma. h∗(∗) = 0. So any contractible space has trivial h∗.

Proof. Use the long exact sequence of

∗ → ∗ → ∗.

This is kind of silly. But anyway. N

Let us check the proof. Consider the sequence

Sn−1 → Dn → Dn/Sn−1 ' Sn;

the associated long exact sequence (and the contractibility of Dn). Induction on n now
implies that

h∗(S
n) = Z or 0

in the appropriate definitions. The spheres have the appropriate h.
Anyway, this now implies that for a CW complex X,

hn(X(n+1))→ hn(X)

is an isomorphism, because you attach cells of higher dimension when you go up to
X(n+2) and so on. Similarly it implies that hk(X

(n)) = 0 for k < n. Also, the map
from

hn(X(n+1))→ hn(X(n+1)/X(n−2))

is an isomorphism, as one can check. This implies that

hn(X) ' hn(X(n+1)) =
ker(hn(X(n)/X(n−1))→ hn−1(X(n−1)/X(n−2)))

Im(hn+1(X(n+1)/X(n))→ hn(X(n/X(n−1))
.

as in the proof of cellular homology.
We now see that hn(X) is the n-th homology of the chain complex

· · · → hn(X(n)/X(n−1))→ hn−1(X(n−1)/X(n−2))→ . . .

where each term is free on the n-cells. This looks very much like the cellular complex,
except that the cellular boundary map might potentially be different from the usual
one. This is really not very hard.

The main point is to show that a map Sn → Sn of degree k induces multiplication
by k on hn(Sn)→ hn(Sn). This can be checked if you use something we haven’t proved.
First, one can easily construct a map of degree k by mapping Sn → ∨kSn by crushing
the complement of neighborhoods of k points. Then, we map ∨kSn → Sn. This map
has degree k. One can check that in any homology theory as above, this map induces
multiplication by k.

Right now we don’t know:
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25.4 Theorem (Hurewicz). Any two maps Sn → Sn of the same degree are homotopic.

But once we use this fact, and the fact that any map Sn → Sn is homotopic to one
of the nice maps constructed above, that any map of degree k induces multiplication
by k in h.

Remark. Excision was sort of built in here, because when you excise something from
a pair, you don’t change a quotient. Excision doesn’t have as good a philosophical
interpretation, and it’s not necessary for this argument.

§3 A variation

Here is a variation:

25.5 Theorem. Suppose h, h′ are two generalized homology theories. Suppose we have
a natural map

τ : h→ h′

which is an isomorphism on the zero-sphere. Then τ is a natural isomorphism.

This is “almost” a generalization of the other theorem. In some sense, it tells you
that homology is determined by the homology of a point. The difference is that here
you have a natural transformation between h, h′ given a priori.

Proof. This is actually much easier to prove than the previous theorem. We’ll sketch
the proof and leave it as an exercise.

1. Show that t : h∗(S
n)→ h′∗(S

n) is an isomorphism for all n.

2. By induction on n, show that t : h∗(X)→ h′∗(X) if X has dimension ≤ k.

3. Use filtered colimits to get all X.

N

It makes a point that comes up all the time in homotopy theory. There’s a big
difference between knowing two things are isomorphic and having an actual map.

§4 Examples of generalized homology

This is just for fun.
We start with a dumb example.

25.6 Example. Fix a CW complex Y . Consider the functor X → H∗(X × Y/ ∗ ×Y )
where ∗ ∈ X is the basepoint. This actually satisfies all the axioms.

You get a weird homology theory here. It is one that fails to satisfy the last axiom:
the “homology” of Y is the singular homology of Y . The last (“dimension”) axiom is
not satisfied. It works out, however, that this is just

h∗(X) = H̃∗(X,H∗(Y )).
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So this is homology of X with “coefficients in Y .” I believe this is the Kunneth theorem.
More precisely,

hn(X) =
⊕
k+l=n

Hk(X,Hl(Y )).

We don’t really know it means for homology to have coefficients in a graded group,
though.

Let us do another more interesting example.

25.7 Example. I suppose this is a rationale for the word “singular” in singular ho-
mology. We define something we call MOk(X). Given X, this is the k-th homology of
the following chain complex:

CMO
k (X) = free abelian group on maps N → X

where N is a smooth k-manifold with boundary. The boundary d : CMO
k (X) →

CMO
k−1 (X) sends N → X to its restriction to its boundary. Since the boundary of a

manifold-with-boundary is a closed manifold, we have d2 = 0.
One can check that this is a homology theory. Even the homology of a point is

interesting. In fact, this is just the group of equivalence classes of n-manifolds where
two manifolds M,N are isomorphic if M tN is the boundary of a bigger manifold.

These kinds of homology theories are very important. There is a very deep theorem
of Thom:

25.8 Theorem (Thom). MOk(∗) is a polynomial ring over Z/2 on variables xi where
i+ 1 is not a power of 2. Moreover MOk(X) is homology of X with coefficients in the
ring above, so the homology theory is actually ordinary.

We’ll have the tools for this next semester.

Lecture 26
10/22

We want to start talking about cohomology now.

§1 Singular cochains

In a way, I think it would be more natural to teach a course like this starting with
cohomology than with homology. You’ll see that it is formally the same, but it seems
to have some advantages.

We start with some motivation. Remember when you study calculus, you might
have a path γ : [a, b]→ R2, and a 1-form pdx+qdy. You study the integral

∫
γ pdx+qdy

and prove various things about that. This 1-form can be thought of a map from paths
γ to real numbers

∫
γ pdx+ qdy. This is what an n-cochain is.

26.1 Definition. An n-cochain on X with values in A (A an abelian group) is a
function c : Singn(X)→ A. Here Singn(X) is the set of all continuous maps ∆n → X.
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So a 1-form gives a 1-cochain (at least if you restrict to smooth simplicies).
The cochains can obviously be added, thanks to the group law in A, and they form

a group.

26.2 Definition. We denote Cn(X,A) for the group of n-cochains on X with values
in A. We define the coboundary δ : Cn(X,A) → Cn+1(X,A) as follows. Let c ∈
Cn(X,A) and s : ∆n+1 → X. Then we define

(δc)(s) = c(∂s) =
∑

(−1)ic(si),

where si is the i-th face of s. This defines δc as a function on Singn+1(X).

Let’s go back and look at these calculus-style examples. A function f : Rn → R gives
a zero-cochain. Namely, it assigns to each zero-simplex (i.e. x ∈ Rn), we output f(x).
Then δf evaluated on a path γ (if it is smooth) is just f(γ(1))− f(γ(0)). By Green’s
theorem, or whatever you want to call it, this is also the line integral

∫
γ fxdx+ fydy or

the integral of the 1-form df .
So the cochain complex, while it is supposed to remind you of homology, actually

has connections to what you learn about in calculus.
I have a lot to stay, and while this calculus formulation has a beautiful theory (the

de Rham cohomology), we’ll say more about this another time.
And now, we have made what we might call a cochain complex C∗(X,A) with

coboundary δ.

26.3 Definition. The singular cohomology groups of X with coefficients in A,
denoted Hj(X,A), are the cohomology groups of C∗(X,A). Namely,

Hn(X,A) =
ker δ : Cn → Cn+1

Imδ : Cn−1 → Cn
.

Your innocence is now over, and we’re now going to have differentials that increase
the degree instead of reduce them. Welcome to the real world. (OK, no, you’ll find it
easy.)

§2 Properties of cohomology

Fix an abelian group A. Cohomology has the following properties.

1. It’s contravariant. If we have a map f : X → Y , this induces a map

f∗ : H∗(Y,A)→ H∗(X,A).

The identity induces the identity in cohomology, and (f ◦ g)∗ = g∗ ◦ f∗. So
cohomology sends commutative diagrams to commutative diagrams. This should
be obvious, but let’s spell it out on the level of cochains. Let c ∈ Cn(Y,A); then
f∗c can be defined as follows. If s : ∆n → X is a simplex, we define

(f∗c)(s) = c(f ◦ s),

because f ◦ s is the map from a simplex into X.
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When f is an open immersion, we can think of this as a restriction map on
cohomology.

Basically, for the same reason that homology is covariant, cohomology is con-
travariant.

2. Homotopy invariance. Homotopic maps give the same map in cohomology. We
can’t prove this now, but we’ll give the idea later.

3. Mayer-Vietoris. Suppose X = U ∪ V for U, V having interiors covering X. Then
there is a natural long exact sequence

· · · → Hn(X,A)→ Hn(U,A)⊕Hn(V,A)→ Hn(U ∩ V,A)→ Hn+1(X,A)→ . . .

There are two ways this is different from homology. The arrows go in the opposite
direction, and the connecting homomorphism raises, not lowers, degrees. This is
just like how the differential raises degrees.

This will follow from a tiny algebraic lemma that should fit into a single lecture.

4. Relative cohomology. Given a pair (X,B), the relative cochain complex can
be defined as follows. Cn(X,B,A) is defined as the set of maps Singn(X) → A
which are zero on Singn(B). Thus, we can define the relative cohomology
Hn(X,B,A) (or Hn(X,B) when A is obvious).

5. Excision. If Z ⊂ B ⊂ X and Z ⊂ Int(B), then the obvious map of relative
cohomology:

H∗(X,B)→ H∗(X − Z,B − Z)

is an isomorphism. Here, of course, cohomology is to be interpreted as cohomology
with coefficients in A.

So anyway, we find that cohomology satisfies the same Eilenberg-Steenrod-ish ax-
ioms in the other direction. To prove all this, we can do some algebra.

§3 The algebraic story

Let S be a set and A an abelian group. Then the set of all maps f : S → A is the same
thing as Hom(Z[S], A). We thus see that, for example,

Cn(X,A) = Hom(Cn(X), A).

The differential is just the transpose of the differential Cn → Cn−1. In particular,

C∗(X,A) = Hom(C∗(X), A)

where Hom becomes a functor from complexes to complexes.

26.4 Proposition. Suppose C1
∗

t→ C2
∗ is a map of chain complexes with the property

that C1
n, C

2
n are free abelian groups.9 Suppose the map

t∗ : H∗(C
1)→ H∗(C

2)

9Like the singular chain complex.
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is an isomorphism. Then the induced map in cohomology with coefficients in A,

H∗(C2, A)→ H∗(C1, A)

is an isomorphism. Here we have defined

H∗(C,A) = cohomology of Hom(C∗, A).

We’ll leave this for another lecture. Anyway, this implies everything we wanted.
For instance, the Mayer-Vietoris sequence.

26.5 Example. The M-V sequence came as follows. Let X = U1 ∪ U2. Then we
defined

CA
∗ (X) = Z

{
SingA(X)

}
where SingAn(X) consists of simplices whose images are contained in U1 or U2. These
are “small” simplices. Mayer-Vietoris came from the sequence

0→ C∗(U ∩ V )→ C∗(U)⊕ C∗(V )→ CA
∗ (X)→ 0

which gave a long exact sequence in homology. The key fact we used was that the map

CA
∗ (X)→ C∗(X)

was an isomorphism in homology.
Now, the proposition tells us that the map C∗(X,A)→ CA(X,A), where we define

C∗(X,A) = Hom(C∗(X), A), C∗A(X,A) = Hom(CA
∗ (X), A),

is an isomorphism in homology. This is a good sign, but we need more.
We use:

26.6 Lemma. Let 0 → L → M → V → 0 be a short exact sequence of free abelian
groups; then the sequence

0→ Hom(V,A)→ Hom(M,A)→ Hom(L,A)→ 0

is an exact sequence for any A.

Proof. This is because N is free and the sequence splits, N ' L⊕M in a nice way. N

OK. Let’s now put all this together. We find that there is an exact sequence

0→ C∗A(X)→ C∗(U)⊕ C∗(V )→ C∗(U ∩ V )→ 0

by the lemma, by dualizing. Taking the long exact sequence of this, and using the fact
that CA(X) has the cohomology of C∗(X), now implies the Mayer-Vietoris sequence.

26.7 Example. You can continue in this manner, and define when X is a CW com-
plex, the cellular cohomology of X. Here this is the cohomology of the complex
H∗(X(∗), X(∗−1)). You can define the cellular differential by sticking together the
connecting homomorphisms. One can check, similarly, that the cohomology of X with
coefficients in A can be computed via the cellular cochain complex.
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26.8 Example. We could look at the cellular cochains on RPn. We would get a
complex which is Z in degrees zero up to n; the maps would alternate between being
zero and multiplication by two.

We find:

Hk(RPn,Z) =


Z if k = 0

Z/2 if k even and ≤ n
0 if k odd and < n

0 if k odd and k = n

But remembering the cochain complex is better.

The point of this is that everything we did in homology can be done for cohomology.
But what else is there? There is a special structure that can be exploited more easily for
cohomology. We won’t prove any of this today; it’ll probably be done on Wednesday.

§4 Some remarks

Cohomology makes it really easy to exploit the fact that each space X has a diagonal
map

X → X ×X, x→ (x, x).

This is a natural transformation between the identity functor and the functor X →
X ×X. If f : X → Y , we get a commutative diagram

X

��

// X ×X

��
Y // Y × Y

.

There is something called the Kunneth formula for homology. Suppose R is a
field. Then

H∗(X × Y,R) ' H∗(X,R)⊗H∗(Y,R).

The same is true for cohomology. This one requires one of X,Y to be finite type,
though—it’s a CW complex with only finitely many cells, for instance. This is some-
thing we haven’t really talked about.

Remark. When I tensor graded groups together, I mean the following:

Hn(X × Y,R) =
⊕
i+j=n

Hi(X,R)⊗R Hj(Y,R).

The reason that cohomology seems to be more powerful is the following. Let V =
H∗(X) and V ∗ = H∗(X) (with coefficients in some field R). Then there is some extra
structure on homology. The diagonal maps imply that there are maps

V → V ⊗ V

and a map
V ∗ ⊗ V ∗ → V ∗.

We’re a lot better at thinking about the latter, though.
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26.9 Theorem. V ∗ = H∗(X) is a ring with the above structure.

V is a co-algebra, which is a little more complicated and harder to understand.
Cohomology is a more powerful tool for us, because it is a ring.

Lecture 27
10/25

Jacob Lurie taught the next three lectures.

Remark. I have decided to reduce the extent of note-taking that I do.

So, recall:
Let X be a space, A abelian grp. You can define H∗(X,A) as the cohomology of

a chain complex. Namely, consider C∗(X,Z), the complex of singular chains which
assigns to each n, the free abelian group on the n-simplices.

27.1 Definition. H∗(X,A) is the cohomology of the complex of singular cochains

C∗(X,A) = Hom(C∗(X,Z), A).

Question: What does this imply about H∗(X,A)?

Remark. If A is injective, meaning that Hom(−, A) is exact as a functor, and thus
commutes with homology, then

H∗(X,A) = Hom(Hn(X), A).

This is not true in general: not all A are injective. However, it is close to true.
Fix an exact sequence 0→M ′ →M →M ′′ → 0; consider the complex

0→ Hom(M ′′, A)→ Hom(M,A)→ Hom(M ′, A)

which is exact. Exactness on the right may fail.
Suppose M ′ ⊂M , and M ′ → A. Can we extend to M → A? Sometimes. Well, we

can form the push-out

M ′ //

��

M

��
A //M tM ′ A

which is a cocartesian, commutative diagram. We get a commutative exact diagram

0 //M ′ //

��

M

��

//M ′′

��

// 0

0 // A //M tM ′ A //M ′′ // 0

which shows that what we need is a map M tM ′ A→ A.
Upshot: Extending M ′ → A to M → A is to make the sequence A → M tM ′ A

split.
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27.2 Definition. A,C ab. grps. An extension of C by A is an exact sequence

0→ A→ B → C → 0.

Two extensions are isomorphic if they fit into a comm. diagram of isomorphisms. The
set of isomorphism classes is denoted Ext(C,A). This has a canonical basepoint A⊕C.

The above construction gives a map Hom(M ′, A)→ Ext(M ′′, A) by sending M ′ →
A to the sequence 0 → A → M tM ′ A → M ′′ → 0. Then the hom extends to M iff it
the extension is trivial.

27.3 Proposition. Let F free abelian. Any subgroup of F is free.

Proof. Omitted. N

Next goal: understand Ext(M,A).

Lecture 28
11/3

Michael Hopkins is back. (Some lectures have been missed.)
We talked about the cup product and the Kunneth theorem last time. The cup

product in relative cohomology also exists. Given A ⊂ X a subspace, we can define
H∗(X,A,R) for R a ring.

28.1 Definition. H∗(X,A,R) is the cohomology of the cochain complex Hom(C∗X/C∗A,R).

Henceforth we drop R and just assume it is there.
We can define the cup product for relative cohomology. This will give maps

H∗(X,A)⊗H∗(X,B)→ H∗(X,A ∪B).

Let c1 ∈ Hn(X,A), c2 ∈ Hm(X,B). Then we define c1∪ c2 to be the cochain whose
value on a simplex s is c1(s′)c2(s′′) where s′, s′′ are the leading (resp. trailing) part
of the simplex. So if s = [a0, . . . , an+m], then s′ = [a0, . . . , am], s′′ = [am, . . . , an+m].
Then c1 ∪ c2 is automatically zero on chains that lie either entirely in A or entirely in
B. So c1∪c2 is zero on C∗(A)+C∗(B). If we let A = {A,B}, then there is an inclusion
CA
∗ (A ∪B) = C∗A+ C∗B → C∗(A ∪B). Dualizing gives a map

C∗(A ∪B)→ C∗A(A ∪B)

which must also be an isomorphism in cohomology. Why?
We have an exact sequence

0→ C∗A(X,A ∪B)→ C∗(X)→ C∗A(A ∪B)→ 0

We can draw another

0→ C∗(X,A ∪B)→ C∗(X)→ C∗(A ∪B)→ 0
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which fits into an exact diagram. The five lemma implies that C∗(A∪B)→ C∗A(A∪B)
is an iso in cohomology.

So we have also an external relative cup product

H∗(X,A)⊗H∗(Y,B)→ H∗(X × Y,X ×B ∪A× Y ).

The Kunneth formula also holds at this level of generality.

28.2 Theorem. If R is a field, and X,A, Y,B are finite CW complexes, then the map
H∗(X,A)⊗H∗(Y,B)→ H∗(X × Y,X ∪B,A× Y ) is an isomorphism in cohomology.

28.3 Example. Take (X,A) = (Rn,Rn − {0}). We know that the cohomology of
(X,A) with R-coefficients is R in dimension n and zero otherwise. The reason is that
one can use the long exact sequence of the pair. Take (Y,B) = (Rm,Rm − {0}).
Then H∗(Y,B) = R if ∗ = m and 0 else. If we tensor these cohomologies together,
there’s an R at n + m and zero in other dimensions. So this is the cohomology of
(X × Y,X ×B ∪A× Y ). That is,

(Rn+m,Rn+m − 0)

as one can easily see. So the Kunneth formula is clearly verified.

28.4 Example. Note that

H∗(S1 × S1 × S1) = H∗(S1)⊗H∗(S1)⊗H∗(S1).

Thus the cohomology ring of the 3-torus can be computed:

R[ε]/ε2 ⊗R[ε]/ε2 ⊗R[ε]/ε2

In particular, it is an exterior algebra.

28.5 Example. The cohomology ring of projective space. The answer is

H∗(CPn,Z) = Z[x]/xn+1,

where x ∈ H2(CPn) is the generator. This works in any ring (thanks to the universal
coefficient theorem).

28.6 Example. H∗(RPn,Z/2) = Z/2[w]/wn+1 where w generates H2(RPn). Here Z/2
coefficients make things nice.

Lecture 29
11/19

A whole bunch of days have been skipped. Sorry. We have been calculating
the homology groups of SO(n) with Z/2 coefficients. What we did was to construct a
map

SO(n)→ Sn−1 = SO(n)/SO(n− 1).
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We argued that if there was a section to this projection, then we would have

SO(n) ' SO(n− 1)× SO(n)/SO(n− 1) = SO(n− 1)× Sn−1,

and by the Kunneth formula, we could compute the homology. Nonetheless, by looking
at some long exact sequences of pairs, we showed that if there is only a section in
homology:

H∗(SO(n))

��
H∗(S

n−1)

66nnnnnnnnnnnn
// H∗(SO(n− 1))

we can still conclude that

H∗(SO(n)) ∼ H∗(SO(n− 1))⊗H∗(Sn−1)

as with the Kunneth formula. For this, we must find a space X mapping to the n− 1-
sphere and a diagram

SO(n− 1)

��
X

::tttttttttt // Sn−1

such that H∗(X) → H∗(S
n−1) is surjective. Then we can lift this to get a homology

section (since by projectivity H∗(X) → H∗(S
n−1) splits). We will take X = RPn−1.

Well, we write
Sn−1 = RPn−1/RPn−2.

Given a random line through the origin in n-space, we look at where it intersects the
unit sphere in the upper half-plane. This is how we could get the isomorphism displayed
above.

But this is not the best way.
On the other hand, we give a map to SO(n). Namely given a line `, at angle θ from

the en-axis, we define the rotation sending the last en to the line at angle 2θ from it,
and the identity on the orthogonal complement from the plane spanned by en and this
vector. More generally if `1, `2 are lines φ, spanning a plane P , then reflecting through
`⊥2 and then reflecting through `⊥1 is going to be a rotation in the plane P by angle 2φ.

We’re going to map
RPn−1 → Sn−1

by sending a line ` to the following two things. First, reflect through e⊥n ; then reflect
through `⊥. This composite is a map T` that moves the en vector that moves through
twice the angle between θ. This is a very nice map from RPn/RPn−1 to Sn−1 (anything
in RPn−1 gets sent to the south pole). This obviously lifts to SO(n), ` → T`. It is a
homeomorphism modulo RPn−2, so clearly onto in homology with Z/2 coefficients. It
also induces a map `→ T`. So we have a diagram

SO(n)

��
RPn−1

::ttttttttt
// Sn−1
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This is a really important map

RPn−1 → SO(n)

Since the map RPn−1 → Sn−1 is surjective, we find

29.1 Theorem. H∗(SO(n),Z/2) (with the Pontryagin product) is the exterior algebra∧
[b1, . . . , bn] where bi has degree i.

In fact, something much better happens. There is a cell decomposition of SO(n).
We can get that in this way. But that’s worth coming back to later. This is anyway in
Hatcher, where he writes this all up in great detail.

Let’s build on this answer a bit more. Now I want to ask: we know the homology
of SO(n); what’s the cohomology ring? That’s a little bit trickier. We are going to be
able to do this, but purely by algebraic manipulation.

Let’s remember. The ring structure in cohomology comes from the diagonal map

SO(n)→ SO(n)× SO(n).

In cohomology this leads to

H∗(SO(n))⊗H∗(SO(n))→ H∗(SO(n)).

So what does the diagonal map do in cohomology? Well, first, what does it do in
homology? We can then take dual vector spaces.

We will not do everything in full generality (i.e. restrict to SO(3)). In homology,
we have the map

H∗(SO(n))→ H∗(SO(n))⊗H∗(SO(n)).

This is a coproduct, and it goes in the wrong direction as an algebra structure. However,
it is also a ring homomorphism (where both homologies are rings via the Pontryagin
product) since the diagonal homomorphism is a group homomorphism. However, we
have the super-duper-important map

RPn−1 → SO(n),

leading to a commutative diagram

RPn−1 //

��

RPn−1 × RPn−1

��
SO(n) // SO(n)× SO(n)

Since these are ring homomorphsims, we just need to figure out where the bi go in
H∗(SO(n))⊗H∗(SO(n)). And we can find the top row via the cup-product structure
in projective space. Well, let H∗(RPn−1) have the basis 1, x, . . . , xn−1; we can get
e0, . . . , en−1 ∈ H∗(RPn−1). The fact that xi ∪ xj = xi+j implies that the map in
homology sends em to the sum

∑
i+j=m ei⊗ej . That describes the map in the homology

of RPn−1 induced by the diagonal map. Anyway, this lets us compute the cohomology
ring of SO(n).
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29.2 Example. SO(3). We want to figure out the map

H∗(SO(3))→ H∗(SO(3))⊗H∗(SO(3)).

The first on e has a basis consisting of 1, b1, b2, b1b2. Under this 1 → 1 ⊗ 1. b1 →
b1 ⊗ 1 + 1⊗ b1. b2 → b2 ⊗ 1 + 1⊗ b2 + b1 ⊗ b1. The product goes to the product. You
can multiply those out. Now we can pass to the dual vector space to think of the cup
product.

If we write c1 = b1, c2 = b2, c3 = b1b2, and c0 = 1, we find that under these maps

c1 → c1 ⊗ 1 + 1⊗ c1 (1)

c2 → c2 ⊗ 1 + c1 ⊗ c1 + 1⊗ c2 (2)

c3 → c3 ⊗ 1 + c2 ⊗ c1 + c1 ⊗ c2 + c3 ⊗ c1 (3)

This is precisely of the form am →
∑

i+j=m ai ⊗ aj . In particular, if we take γ ∈
H1(SO(3)) to be dual to c1, then H∗(SO(3)) is Z/2[y]/(y4). In fact

SO(3) ' RP3.

Remark. Let V be a vector space with an algebra structure, i.e. a map V ⊗ V → V .
Let εi be a basis and suppose

εi ⊗ εj →
∑

akijεk.

Now V ∗ will be a dual basis εi. There is a map

V ∗ → V ∗ ⊗ V ∗.

Its matrix form can be worked out explicitly. There will be a map

εi →
∑

dijkε
j ⊗ εk

Then the dijk will be like the akij with some permutation. This is a bit of formalism
with linear algebra.

Lecture 30
11/24

Let p : E → B be a fiber bundle with fiber F , with F compact and Hausdorff.
Last time:

30.1 Proposition. p is trivial iff there is a map E → F such that p−1b→ E → F is
a homeomorphism for all b ∈ B.

30.2 Proposition. Work with coefficients in a field. If the fiber bundle looks trivial
in cohomology, i.e. there is a section

H∗(F )→ H∗(E)

which becomes an iso on each fiber, then the map

H∗(B)⊗H∗(F )→ H∗(E)

is an iso.
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Proof. Suppose E → B is trivial and the map is projection B×F → B. Then we have
a map

H∗(B)⊗H∗(F ) ' H∗(B × F )← H∗(F )

such that for each b ∈ B,
H∗({b} × F )← H∗(F )

is an iso. Using some algebra (omitted!), the result is not hard to show.
The general case is proved as follows. Suppose B = U1 ∪ U2 where E is trivial on

U1, U2. Then use Mayer-Vietoris. Namely, we get

H∗−1(p−1(U1 ∩ U2))→ H∗(E)→ H∗(p−1U1)⊕H∗(p−1U1)→ . . .

and we know the theorem for U1, U2. From this the five lemma gives the result. In
general, use induction on the number of open sets in a cover. Then that does it for a
base space covered by finitely many compact sets. N

30.3 Example. Consider a fiber bundle

RPn−1 → E → B,

for instance a projective space bundle. Suppose there is an element x ∈ H1(E,Z/2)
that restricts to a generator of every fiber RPn−1, then using cup products of x we can
get a map

H∗(E)← H∗(RPn−1)

Then
H∗(E) ' H∗(B)⊗

{
1, α, . . . , αn−1

}
30.4 Proposition. Consider a principal G-bundle

G→ E
p→ B.

If there is a homology section, then we have

H∗(E) ' H∗(B)⊗H∗(G)

Proof. Again, step 1: check for trivial bundles: step 2: use Mayer-Vietoris; step 3: use
filtered colimits.

N

This will enable us to compute the homology of SO(n) as before. We find that

H ∗ (SO(n)) ' H∗(S1)⊗H∗(S2)⊗ · · · ⊗H∗(Sn−1).

Next semester, we will learn another relationship between the homologies of fiber
bundles, called a spectral sequence.

We would like to end with a puzzle. Consider the Hopf bundle (a principal S1-
bundle)

S1 → S2n−1 → CPn−1.
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It is easy to check that this is locally trivial. Namely, we can find a section over

Ui = {[z0, . . . , zn−1] : zi 6= 0}

by sending [z0, . . . , zn−1] to (z0/zi, . . . , zi/zi, . . . , zn/zi) and scaling by the norm. So on
the open sets Ui, this bundle has a section.

Question: Can we do this trivialization with fewer than n open sets?
The theorems that we have studied don’t apply, asH∗(S2n−1) is clearly notH∗(CPn−1)⊗

H∗(S1). Let x ∈ H2(CPn−1,Z) be the generator. Suppose there is a ∈ H∗(B) that goes
to zero in H∗(E). Then if U is an open subset on which the bundle becomes trivial,
a goes to zero in H∗(U), because being trivial means that H∗(U) → H∗(p−1(U)) is
injective.

Suppose B = U ∪V and the bundle was trivial on each. Then a goes to zero in both
U and V , so it comes from H∗(B,U) as well as in H∗(B, V ). It follows that a2 = 0 as
it is in H∗(B,U ∪ V ) = 0.

In particular, we see that if B can be covered by two open sets, on which p is trivial,
then any such element a has square zero. There is an obvious generalization of this. If
B can be covered by k open sets as above, then ak = 0.

So suppose x 6= 0 in CPn−1. Then x goes to zero in S2n−1. So if CPn−1 can be
covered by fewer than n open sets, we’d have xk = 0 which is silly.

Lecture 31
11/29

§1 Grassmannians

We are now going to talk about the cohomology of Grassmannians. There are two
different ways of calculating this, and we look at this down.

31.1 Definition. Grk(Rn+k) is the space of k-planes through the origin in Rn+k.

31.2 Example. Gr1(Rn+1) = RPn.

If we have a k-plane V ⊂ Rn+1, we can choose an orthonormal basis {v1, . . . , vk} ⊂
V . Here v1, . . . , vk and v′1, . . . , v

′
k determine the same plane if there is an orthogonal

matrix T ∈ O(k) such that T (vi) = v′i, ∀i. In other words,

Grk(Rn+k) = {orthonormal k − frames modulo }O(k)

Here the set Vk of orthonormal frames is a subset of a product of spheres, so it has a
topology. Thus the Grassmannian gets the quotient topology.

31.3 Proposition. Grk(Rn+k) is a manifold of dimension nk.

Proof. Pick V ⊂ Rn+k. Let W = V ⊥. Let U be the set of all V ′ ∈ Grk(Rn+k) such that
V ′ ∩W = {0}. That is, the projection from any such V ′ down to V is an isomorphism,
so by the vertical line test this subspace V ′ is a graph of a map T : V → W . This
identifies U with the set of maps Hom(V,W ), which is a linear space of dimension
nk. N
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We will now decompose the Grassmannian into a cell decomposition, into a bunch
of things called Schubert cells. Let’s remember what went on in RPn. We filtered
Rn+1 by various Ri, i ≤ n + 1 and looked at the set ei =

{
` : ` ⊂ Ri+1, ` 6⊂ Ri

}
. If we

intersected the set ei with the upper half of the i-sphere, then we got a homeomorphism.
So ei is an open cell.

If there is a plane V ⊂ Rn+k, we can look at the various numbers

dimV ∩ R1, . . . ,dimV ∩ Rn+k.

This can be various sequences of numbers.

31.4 Example. Let V ∈ Gr3(R5) with basis (1, 1, 0, 0, 0), (0,−1, 1, 1, 0), (2,−3, 0, 0, 1).
Then the sequence goes 0, 1, 1, 2, 3.

What is interesting is where the dimension jumps. Let V ∈ Grk(Rn+k) and let
j1, . . . , jk be the places where the dimension Ri ∩ V jumps by one. This is a sequence
of k numbers because V is k-dimensional.

Given a sequence j = (j1, . . . , jk) ∈ [1, n+ k], we define the object Hi = Rji so that
there is a sequence

R1 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk ⊂ Rn+k.

31.5 Definition. Fix the above notations.
The Schubert variety S is the set of all planes V ⊂ Rn+k such that dimV ∩Hi ≥ i.

Given these notations, we let a = (a1, . . . , ak) where each ai = ji− i. We shall write
Sa for the Schubert variety.

31.6 Example. Gr1(Rn+1). Here the possible j’s are just 1, 2, . . . , n + 1. The corre-
sponding element a is just 0, 1, . . . , n and the Schubert cell Sa is just the set of lines
which is contained in Ra+1, so alternatively RPa. The Schubert varieties are just the
lower projective spaces as a result.

(denoted Σa in Σεcτιν)
In general, Sa is not a manifold. It’s an algebraic variety with singularities. As we

shall see,

dimSa =
∑

ai.

31.7 Lemma. Sa is contained in Sa′ iff ai ≤ a′i for all i.

Note that:
0 ≤ a1 ≤ · · · ≤ ak ≤ n.

31.8 Example. Gr2(R5). Then a can be (0, 0), (0, 1), (0, 2), (1, 2), (2, 2) etc. and we
can draw a lattice of what these can look like.

As we will see, the Schubert varieties are actually cells, and they actually give a
basis for the homology of the Grassmannian.

31.9 Proposition. ea = Sa −
⋃

a′<a Sa′ is a euclidean space of dimension Ra1+···+ak .
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So ea is the set of all V ⊂ Rn+k such that dimV ∩Hi = i for all i, while dimV ∩
Hi−1 = i − 1. So the jumps occur exactly at these spots. This is like what happened
earlier.

Proof. This corresponds to a bunch of lines in Rji − Rji−1. More details? N

31.10 Proposition. The ea are the interiors of a cell decomposition of the Grassman-
nian. In the cellular chain complex with Z/2 coefficients, the differential is zero.
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