
MATH 215B HOMEWORK 6 SOLUTIONS

1. Let X be a Moore space M(Zm, n) obtained from Sn by attaching a cell en+1

by a map of degree m.
(a) (6 marks) Show that the quotient map X → X/Sn = Sn+1 induces the

trivial map on H̃i(−;Z) for all i, but not on Hn+1(−;Z). Deduce that
the splitting in the universal coefficient theorem for cohomology cannot be
natural.

(b) (4 marks) Show that the inclusion Sn ↪→ X induces the trivial map on
H̃i(−;Z) for all i, but not on Hn(−;Z).

Solution
(a) Recall that H̃i(M(Z/m, n)) is trivial except when i = n, in which case it is

Z/m. So for every i, either Hi(X) or Hi(Sn+1) is trivial. So of course the
quotient map X → Sn+1 induces trivial maps on homology.

As for cohomology, consider the long exact sequence of the pair (X,Sn).
Part of it looks like this:

H̃n+1(X/Sn)→ H̃n+1(X)→ H̃n+1(Sn)

The right group is trivial. By the universal coefficient theorem, H̃n+1(X) ≈
Ext(Z/m,Z) ≈ Z/m. So we have

Z→ Z/m→ 0

so the map is surjective, not trivial.
Now consider the mapsX → Sn+1, and the homomorphisms this induces

in the universal coefficient theorem:

0 // Ext(Hn(Sn+1),Z) //

��

Hn+1(Sn+1) //

��

Hom(Hn+1(Sn+1),Z) //

��

0

0 // Ext(Hn(X),Z) // Hn+1(X) // Hom(Hn+1(X),Z) // 0

which we calculate as

0 // 0 //

��

Z //

����

Z //

��

uu
0

0 // Z/m // Z/m // 0 //ll 0

We’ve drawn in the splittings. If they were natural, then the square

Z

����

Z
uu

��
Z/m 0ll

would commute. But it cannot commute because the left homomorphism
is not trivial.
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(b) The inclusion Sn ↪→ X induces trivial maps on H̃i(−;Z) for dimension
reasons: H̃i(Sn) is trivial for i 6= n, and H̃i(X) is trivial for i 6= n+ 1.

As for homology, consider the long exact sequence of the pair (X,Sn).
Part of it looks like

H̃n(Sn)→ H̃n(X)→ H̃n(X/Sn)

The last group is isomorphic to H̃n(Sn+1) = 0. So we have

Z→ Z/m→ 0

the first map of which is surjective and thus nontrivial.

2. (12 marks) Assuming as known the cup product structure on the torus S1×S1,
compute the cup product structure in H∗(Mg) for Mg the closed orientable surface
of genus g by using the quotient map from Mg to a wedge sum of g tori, shown
below.
Solution

Recall that the homology of Mg is as follows:

Hi(Mg) ≈


Z i = 0
⊕2gZ i = 1
Z i = 2
0 otherwise

H1 is generated by g “longitudinal” classes a1, . . . , ag and g “latitudinal” classes
b1, . . . , bg. H2 is generated by a single class c. On the other hand, the homology of
the wedge sum of g tori is:

Hi(∨g(S1 × S1)) ≈


Z i = 0
⊕2gZ i = 1
⊕gZ i = 2
0 otherwise

H1 is generated by g longitudinal classes and g latitudinal classes, a1, . . . , ag and
b1, . . . , bg respectively. H2 is generated by the classes c1, . . . , cg, one for each wedge
summand.

I claim that the quotient map in the problem statement induces maps on homol-
ogy as follows:

H∗(Mg) −→ H∗(∨g(S1 × S1))
ai 7−→ ai

bi 7−→ bi

c 7−→
∑

ci

You can see why this is so for the 1-dimensional generators by choosing singular
cycles representing the generators. As for the 2-dimensional generators, we can
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consider local homology groups at a point x ∈ Mg such that q(x) is not the base-
point:

H2(Mg)
q∗ //

≈
��

H2(∨g(S1 × S1))

≈
��

H2(Mg,Mg − x)
q∗ //

≈
��

H2(∨g(S1 × S1),∨g(S1 × S1)− q(x))

≈
��

H̃2(S2)
≈ // H̃2(S2)

The upper vertical maps come from the long exact sequence of a pair, and the lower
two maps are the isomorphisms Hi(X,A) ≈ H̃i(X/A). q is a local homeomorphism
at x and so sends a generator of H2(Mg,Mg − x) (such as the image of c) to a
generator of H2(∨g(S1×S1),∨g(S1×S1)− q(x)). If q(x) lies in the ith torus, then
this latter group is isomorphic to H2(S1 × S1, S1 × S1 − q(x)) which is generated
by the image of ci. Since this holds for all i, we conclude that in the top row, c is
sent to a sum

∑
±ci. If we chose the generators ci correctly, the signs will all be

positive.
When we apply the universal coefficient theorem to q∗, we find that all the Ext

terms vanish. So the cohomology groups are the duals of the homology groups:
H∗(Mg) is free in each dimension with generators αi, βi in dimension 1 dual to
ai, bi and generator γ in dimension 2 dual to c. H∗(∨g(S1 × S1)) is free in each
dimension with generators αi, βi, γi dual to ai, bi, ci. And of course, one generator
for each in dimension 0.

Also, the universal coefficient theorem is natural, so q∗ is the dual of q∗:

H∗(Mg)
q∗←− H∗(∨g(S1 × S1))

αi ←− [ αi

βi ←− [ βi

γ ←− [ γi

Recall that the reduced cohomology ring of the wedge sum of spaces is the product
of the reduced cohomology rings: H̃∗(∨g(S1×S1)) ≈

∏
g H̃

∗(S1×S1). (These rings
don’t have identities, so you may prefer to call them Z-algebras.) So, using the cup
product structure of H∗(S1 × S1), we learn that αi ∪ βi = γi and βi ∪ αi = −γi,
and all other products of the 1-dimensional generators are trivial. This determines
the cup product structure of H∗(∨g(S1 × S1)).

Now using q∗, we can see that inH∗(Mg), αi∪βi = q∗(αi)∪q∗(βi) = q∗(αi∪βi) =
q∗(γi) = γ. Similarly, we find that

βi ∪ αi = −γ
αi ∪ βj = βj ∪ αi = 0 for i 6= j

αi ∪ αj = 0
βi ∪ βj = 0
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3. (10 marks) Using the cup product Hk(X,A;R) ×H l(X,B;R) → Hk+l(X,A ∪
B;R), show that if X is the union of contractible open subsets A and B, then all
cup products of positive-dimensional classes in H∗(X;R) are zero. This applies in
particular if X is a suspension. Generalize to the situation that X is the union
of n contractible open subsets, to show that all n-fold cup products of positive-
dimensional classes are zero.
Solution

Since A is contractible, the long exact sequence for the pair (X,A) gives us that
the maps j∗ : Hk(X,A;R) → Hk(X;R) are isomorphisms for all k ≥ 1. Same
thing for the maps i∗ : Hk(X,B;R)→ Hk(X;R).

Let us study how j∗ and i∗ behave with respect to cup products. Consider the
following two diagrams of projections

Cn(X)
j−→ Cn(X)/Cn(A)

f1−→ Cn(X)/Cn(A+B)

Cn(X) i−→ Cn(X)/Cn(B)
f2−→ Cn(X)/Cn(A+B)

whose composition are both the projection g : Cn(X)→ Cn(X)/Cn(A+B). Then
given a ∈ H∗(X,A;R) and b ∈ H∗(X,B;R), I will show that j∗(a) ∪ i∗(b) =
g∗(a ∪ b), where the inner cup product is the relative cup product H∗(X,A;R) ×
H∗(X,B;R)→ H∗(X,A+B;R) and the outer denotes the cup productH∗(X;R)×
H∗(X;R)→ H∗(X;R).

The relative cup product is defined on two cochains φ : Ck(X)/Ck(A)→ R and
ψ : Cl(X)/Cl(B) → R by first taking (φ ◦ j) ∪ (ψ ◦ i) : Ck+l(X) → R. Then
(φ ∪ ψ)([w]) =

(
(φ ◦ j) ∪ (ψ ◦ i)

)
(w) for w ∈ Cn(X), where I am denoting by [w]

its class in Ck+l(X)/Ck+l(A+B), that is, [w] = g(w). This is well defined because
φ ◦ j takes elements of Cn(A) to 0 and ψ ◦ i takes elements of Cn(B) to 0.

g#(φ∪ψ)(w) = (φ∪ψ)(g(w)) = (φ∪ψ)([w]) =
(
(φ◦j)∪(ψ◦i)

)
(w) =

(
j#(φ)∪i#(ψ)

)
(w)

So g∗(φ∪ψ) = j∗(φ)∪ i∗(ψ). Since cup products are bilinear, this shows the result
for general elements of H∗(X,A;R) and H∗(X,B;R).

Let x ∈ Hk(X;R), y ∈ H l(X;R) with k, l > 0. Then there are z ∈ Hk(X,A;R)
and w ∈ H l(X,B;R) with j∗(z) = x and i∗(w) = y.

x ∪ y = j∗(z) ∪ i∗(w) = g∗(z ∪ y) = 0

because H∗(X,A + B;R) ∼= H∗(X,A ∪ B;R) = H∗(X,X;R) = 0. Excision was
used in the first isomorphism.

When X is the suspension of Y , we can write X as the union of two cones on
Y . Each cone has an open neighbourhood that deformation retracts onto the cone
and so it is contractible.

Assume now that X is the union of n contractible open subsets U1, . . . , Un.
Define a relative cup product

H∗(X,U1;R)× . . .×H∗(X,Un;R)→ H(X,U1 ∪ . . . ∪ Un;R)
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by setting (φ1 ∪ . . .∪ φn)([w]) =
(
(φ1 ◦ p1)∪ . . .∪ (φn ◦ pn)

)
(w), where [w] = g(w)

denotes the class of w ∈ Cm(X) in Cm(X)/Cm(U1 + . . .+ Un) and pj : Cm(X)→
Cm(X)/Cm(Uj) are the projections. It is obvious now that g∗(φ1 ∪ . . . ∪ φn) =
p∗1(φ1)∪ . . .∪ p∗n(φn). Now given elements x1, . . . , xn in the cohomology of X with
positive degree, we have that xj = p∗j (yj) for some yj in H∗(X,Uj ;R) because the
Uj are contractible and so:

x1 ∪ . . . ∪ xn = p∗1(y1) ∪ . . . ∪ p∗n(yn) = g∗(y1 ∪ . . . ∪ yn) = 0

because H∗(X,U1 + . . . + Un;R) ∼= H∗(X,U1 ∪ . . . ∪ Un;R) = H∗(X,X;R) = 0.
Again we used excision in the first isomorphism.

4. (a) (6 marks) Using the cup product structure, show that there is no map
RPn → RPm inducing a nontrivial map H1(RPm;Z2) → H1(RPn;Z2) if n > m.
What is the corresponding result for maps CPn → CPm?

(b) (8 marks) Prove the Borsuk-Ulam theorem by the following argument. Sup-
pose on the contrary that f : Sn → Rn satisfies f(x) 6= f(−x) for all x. Then
define g : Sn → Sn−1 by g(x) = (f(x)− f(−x)) /|f(x)−f(−x)|, so g(−x) = −g(x)
and g induces a map RPn → RPn−1. Show that part (a) applies to this map.
Solution

(a) Recall that for any n, H∗(RPn;Z/2) ≈ Z/2[α]/(αn+1), with |α| = 1. If
f : RPn → RPm is a map that induces a nontrivial map on H1(−;Z/2),
that means that f∗(α) = α. Therefore f∗(αm+1) = f∗(αm)f∗(α) = αmα =
αm+1, which is a nontrivial element in Hm+1(RPn;Z/2). But this is im-
possible because αm+1 is trivial in H∗(RPm;Z/2).

Recall that for any n, H∗(CPn;Z) ≈ Z[α]/(αn+1), with |α| = 2. A
similar argument to the above paragraph shows that there is no map CPn →
CPm inducing a nontrivial map H2(CPm) → H2(CPn) if n > m. (The
argument is as follows: f∗(αm+1) = f∗(αm)f∗(α) = αmα = αm+1, which
is a nontrivial element in Hm+1(CPn). But αm+1 is trivial in H∗(CPm).)

(b) If we have f as in the problem statement, then g is well-defined and contin-
uous because the denominator never vanishes. Also note that the norm of
g(x) is 1, so g(x) lies in the sphere Sn−1; and note also that g(−x) = −g(x).
Thus g descends to a map of projective spaces as follows:

Sn
g //

��

Sn−1

��
RPn

g // RPn−1

The vertical maps are the usual two-sheeted covering maps, and we will
call the lower map g as well.

We use the theory of covering spaces: Suppose we have a based loop in
RPn that represents a generator of π1. It lifts to a path in its universal
cover Sn from a point x to its antipode −x. The image of that path under
g is a path from g(x) to its antipode g(−x) = −g(x). The image of this
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path under the covering map is a loop that is not nullhomotopic. So we
have that g∗ : π1(RPn)→ π1(RPn−1) is nontrivial.

If n = 2, this is already a contradiction because there is no nontrivial
homomorphism Z/2 → Z. If n = 1, then RP0 is a point, and we have a
contradiction because there is no nontrivial homomorphism Z → 0. From
now on we assume n > 2. In particular, the nontrivial homomorphism g∗
is in fact an isomorphism.

Recall from Section 2.A in Hatcher that H1 is the abelianization of π1.
In fact there is a homomorphism h : π1(X) → H1(X) which is an isomor-
phism if X is path-connected and π1(X) is abelian. This homomorphism
is natural, meaning that we have a commutative square:

π1(RPn)
g∗

≈
//

h≈
��

π1(RPn−1)

h≈
��

H1(RPn)
g∗ // H1(RPn−1)

The top map is an isomorphism, so the bottom map is also. Now we apply
the universal coefficient theorem. Since H0 is free, the Ext terms vanish,
and we have

0 // H1(RPn−1;Z/2) //

g∗

��

Hom(H1(RPn−1),Z/2) //

(g∗)
∗

��

0

0 // H1(RPn;Z/2) // Hom(H1(RPn),Z/2) // 0

Since g∗ is an isomorphism, its dual (g∗)∗ is an isomorphism too, and so g∗

is an isomorphism, taking the generator α to the generator α. This violates
part (a), so we have a contradiction.

5. (6 marks) Use cup products to show that RP3 is not homotopy equivalent to
RP2 ∨ S3.
Solution

The cohomology ring of RP3 with Z/2 coefficients is Z[α]/(α4), with |α| = 1.
In particular, it is a free Z/2-module in each dimension, with generators 1, α, α2,
α3 of dimensions 0, 1, 2, and 3, respectively.

The reduced cohomology ring (or Z/2-algebra, if you like) of RP2 ∨ S3 with
coefficients in Z/2 is H̃∗(RP2;Z/2)× H̃∗(S3;Z/2). So the unreduced cohomology
ring of this space is also a Z/2-module in each dimension, with generators 1, α, α2,
s of dimensions 0, 1, 2, and 3, respectively. But unlike the case of RP3, we have
α3 = 0. So the cohomology rings are not isomorphic (as rings), and so the spaces
are not homotopy equivalent.

6. (10 marks) Show that the spaces (S1 ×CP∞)/(S1 ×{x0}) and S3 ×CP∞ have
isomorphic cohomology rings with Z or any other coefficients.
Solution

Let X = (S1 × CP∞)/(S1 × {x0}) for short.
Note that the proof of Theorem 3.12 for CP∞ works for any coefficients R, so

H∗(CP∞;R) ∼= R[a2]. Alternatively, since CPn is orientable, then it is R-orientable
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and we can use the same argument given in class using Corollary 3.39. Also, note
that since the homology of Sn is free abelian, all the Ext terms in the universal
coefficient theorem for cohomology vanish and so Hn(Sn;R) =Hom(Hn(Sn), R) ∼=
R. Therefore, we can use Künneth theorem for products of spaces with spheres. So
we have:

H∗(S3 × CP∞;R) ∼= H∗(S3;R)⊗R H∗(CP∞;R) ∼= ΛR[b3]⊗R[a2]

On the other hand, by the relative Künneth theorem,

H∗(S1 × CP∞, S1 × {x0};R) ∼= H∗(S1;R)⊗H∗(CP∞, x0;R) ∼= ΛR[c1]⊗R R̃[d2]

where R̃[d2] is the polynomial ring R[d] without the elements of degree 0. Since
(S1 ×CP∞, S1 ×{x0}) is a CW pair, it is a good pair and so H∗(S1 ×CP∞, S1 ×
{x0};R) = H̃∗(X;R). Then if k > 0, then H2k(X;R) is generated as an R-module
by dk

2 , H1(X;R) = 0 and H2k+1(X;R) is generated as an R-module by c1 ∪ dk
2 for

k > 0. Now H∗(X;R) is the reduced cohomology plus the elements in degree 0 that
act as multiplication by elements of R, so H∗(X;R) is generated multiplicatively
by the elements 1 ∈ H0(X;R), d2 ∈ H2(X;R) and c1 ∪ d2 ∈ H3(X;R).

Let φ : ΛR[b3]⊗RR[a2]→ H∗(X;R) be the only ring homomorphism that takes
1 to 1, b3 to c1 ∪ d2 and a2 to d2. This map has as its inverse the only ring
homomorphism ψ : H∗(X;R) → ΛR[b3] ⊗R R[a2] that takes 1 to 1, c1 ∪ d2 to b3
and d2 to a2. These two maps are well defined because:

(c1 ∪ d2)2 = ±c21 ∪ d2 = 0 = b23

b3 ∪ a2 = (−1)6a2 ∪ b3 = a2 ∪ b3

(c1 ∪ d2) ∪ d2 = (−1)6d2 ∪ (c1 ∪ d2) = d2 ∪ (c1 ∪ d2)

and these are the only relations in these rings. In fact, we did not need to look at
the last two relations since they would be automatically preserved by the fact that
the products in the cohomology ring are graded commutative and the maps φ and
ψ were graded maps by definition.


