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6 Simplicial Homology Groups

6.1 The Chain Groups of a Simplicial Complex

Let K be a simplicial complex. For each non-negative integer q, let ∆q(K)
be the additive group consisting of all formal sums of the form
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where n1, n2, . . . , ns are integers and vr0,v
r
1, . . . ,v

r
q are (not necessarily dis-

tinct) vertices of K that span a simplex of K for r = 1, 2, . . . , s. (In more
formal language, the group ∆q(K) is the free Abelian group generated by the
set of all (q+ 1)-tuples of the form (v0,v1, . . . ,vq), where v0,v1, . . . ,vq span
a simplex of K.)

We recall some basic facts concerning permutations. A permutation of
a set S is a bijection mapping S onto itself. The set of all permutations of
some set S is a group; the group multiplication corresponds to composition of
permutations. A transposition is a permutation of a set S which interchanges
two elements of S, leaving the remaining elements of the set fixed. If S is
finite and has more than one element then any permutation of S can be
expressed as a product of transpositions. In particular any permutation of
the set {0, 1, . . . , q} can be expressed as a product of transpositions (j−1, j)
that interchange j − 1 and j for some j.

Associated to any permutation π of a finite set S is a number επ, known as
the parity or signature of the permutation, which can take on the values ±1.
If π can be expressed as the product of an even number of transpositions,
then επ = +1; if π can be expressed as the product of an odd number of
transpositions then επ = −1. The function π 7→ επ is a homomorphism
from the group of permutations of a finite set S to the multiplicative group
{+1,−1} (i.e., επρ = επερ for all permutations π and ρ of the set S). Note in
particular that the parity of any transposition is −1.

Definition The qth chain group Cq(K) of the simplicial complex K is de-
fined to be the quotient group ∆q(K)/∆0

q(K), where ∆0
q(K) is the sub-

group of ∆q(K) generated by elements of the form (v0,v1, . . . ,vq) where
v0,v1, . . . ,vq are not all distinct, and by elements of the form

(vπ(0),vπ(1), . . . ,vπ(q))− επ(v0,v1, . . . ,vq)

where π is some permutation of {0, 1, . . . , q} with parity επ. For convenience,
we define Cq(K) = {0} when q < 0 or q > dimK, where dimK is the
dimension of the simplicial complex K. An element of the chain group Cq(K)
is referred to as q-chain of the simplicial complex K.
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We denote by 〈v0,v1, . . . ,vq〉 the element ∆0
q(K) + (v0,v1, . . . ,vq) of

Cq(K) corresponding to (v0,v1, . . . ,vq). The following results follow imme-
diately from the definition of Cq(K).

Lemma 6.1 Let v0,v1, . . . ,vq be vertices of a simplicial complex K that
span a simplex of K. Then

• 〈v0,v1, . . . ,vq〉 = 0 if v0,v1, . . . ,vq are not all distinct,

• 〈vπ(0),vπ(1), . . . ,vπ(q)〉 = επ〈v0,v1, . . . ,vq〉 for any permutation π of the
set {0, 1, . . . , q}.

Example If v0 and v1 are the endpoints of some line segment then

〈v0,v1〉 = −〈v1,v0〉.

If v0, v1 and v2 are the vertices of a triangle in some Euclidean space then

〈v0,v1,v2〉 = 〈v1,v2,v0〉 = 〈v2,v0,v1〉 = −〈v2,v1,v0〉
= −〈v0,v2,v1〉 = −〈v1,v0,v2〉.

Definition An oriented q-simplex is an element of the chain group Cq(K)
of the form ±〈v0,v1, . . . ,vq〉, where v0,v1, . . . ,vq are distinct and span a
simplex of K.

An oriented simplex of K can be thought of as consisting of a simplex of
K (namely the simplex spanned by the prescribed vertices), together with
one of two possible ‘orientations’ on that simplex. Any ordering of the ver-
tices determines an orientation of the simplex; any even permutation of the
ordering of the vertices preserves the orientation on the simplex, whereas any
odd permutation of this ordering reverses orientation.

Any q-chain of a simplicial complex K can be expressed as a sum of the
form

n1σ1 + n2σ2 + · · ·+ nsσs

where n1, n2, . . . , ns are integers and σ1, σ2, . . . , σs are oriented q-simplices of
K. If we reverse the orientation on one of these simplices σi then this reverses
the sign of the corresponding coefficient ni. If σ1, σ2, . . . , σs represent distinct
simplices of K then the coefficients n1, n2, . . . , ns are uniquely determined.

Example Let v0, v1 and v2 be the vertices of a triangle in some Euclidean
space. Let K be the simplicial complex consisting of this triangle, together
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with its edges and vertices. Every 0-chain of K can be expressed uniquely in
the form

n0〈v0〉+ n1〈v1〉+ n2〈v2〉
for some n0, n1, n2 ∈ Z. Similarly any 1-chain of K can be expressed uniquely
in the form

m0〈v1,v2〉+m1〈v2,v0〉+m2〈v0,v1〉
for some m0,m1,m2 ∈ Z, and any 2-chain of K can be expressed uniquely
as n〈v0,v1,v2〉 for some integer n.

Lemma 6.2 Let K be a simplicial complex, and let A be an additive group.
Suppose that, to each (q + 1)-tuple (v0,v1, . . . ,vq) of vertices spanning a
simplex of K, there corresponds an element α(v0,v1, . . . ,vq) of A, where

• α(v0,v1, . . . ,vq) = 0 unless v0,v1, . . . ,vq are all distinct,

• α(v0,v1, . . . ,vq) changes sign on interchanging any two adjacent ver-
tices vj−1 and vj.

Then there exists a well-defined homomorphism from Cq(K) to A which sends
〈v0,v1, . . . ,vq〉 to α(v0,v1, . . . ,vq) whenever v0,v1, . . . ,vq span a simplex of
K. This homomorphism is uniquely determined.

Proof The given function defined on (q+ 1)-tuples of vertices of K extends
to a well-defined homomorphism α: ∆q(K)→ A given by

α
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q) ∈ ∆q(K). Moreover (v0,v1, . . . ,vq) ∈ kerα

unless v0,v1, . . . ,vq are all distinct. Also

(vπ(0),vπ(1), . . . ,vπ(q))− επ(v0,v1, . . . ,vq) ∈ kerα

for all permutations π of {0, 1, . . . , q}, since the permutation π can be ex-
pressed as a product of transpositions (j − 1, j) that interchange j − 1 with
j for some j and leave the rest of the set fixed, and the parity επ of π is
given by επ = +1 when the number of such transpositions is even, and by
επ = −1 when the number of such transpositions is odd. Thus the generators
of ∆0

q(K) are contained in kerα, and hence ∆0
q(K) ⊂ kerα. The required

homomorphism α̃:Cq(K)→ A is then defined by the formula

α̃

(
s∑
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6.2 Boundary Homomorphisms

Let K be a simplicial complex. We introduce below boundary homomor-
phisms ∂q:Cq(K) → Cq−1(K) between the chain groups of K. If σ is an
oriented q-simplex of K then ∂q(σ) is a (q − 1)-chain which is a formal sum
of the (q − 1)-faces of σ, each with an orientation determined by the orien-
tation of σ.

Let σ be a q-simplex with vertices v0,v1, . . . ,vq. For each integer j
between 0 and q we denote by 〈v0, . . . , v̂j, . . . ,vq〉 the oriented (q − 1)-face

〈v0, . . . ,vj−1,vj+1, . . . ,vq〉

of the simplex σ obtained on omitting vj from the set of vertices of σ. In
particular

〈v̂0,v1, . . . ,vq〉 ≡ 〈v1, . . . ,vq〉, 〈v0, . . . ,vq−1, v̂q〉 ≡ 〈v0, . . . ,vq−1〉.

Similarly if j and k are integers between 0 and q, where j < k, we denote by

〈v0, . . . , v̂j, . . . , v̂k, . . .vq〉

the oriented (q−2)-face 〈v0, . . . ,vj−1,vj+1, . . . ,vk−1,vk+1, . . . ,vq〉 of the sim-
plex σ obtained on omitting vj and vk from the set of vertices of σ.

We now define a ‘boundary homomorphism’ ∂q:Cq(K) → Cq−1(K) for
each integer q. Define ∂q = 0 if q ≤ 0 or q > dimK. (In this case one
or other of the groups Cq(K) and Cq−1(K) is trivial.) Suppose then that
0 < q ≤ dimK. Given vertices v0,v1, . . . ,vq spanning a simplex of K, let

α(v0,v1, . . . ,vq) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉.

Inspection of this formula shows that α(v0,v1, . . . ,vq) changes sign whenever
two adjacent vertices vi−1 and vi are interchanged.

Suppose that vj = vk for some j and k satisfying j < k. Then

α(v0,v1, . . . ,vq) = (−1)j〈v0, . . . , v̂j, . . . ,vq〉+ (−1)k〈v0, . . . , v̂k, . . . ,vq〉,

since the remaining terms in the expression defining α(v0,v1, . . . ,vq) con-
tain both vj and vk. However (v0, . . . , v̂k, . . . ,vq) can be transformed to
(v0, . . . , v̂j, . . . ,vq) by making k− j − 1 transpositions which interchange vj
successively with the vertices vj+1,vj+2, . . . ,vk−1. Therefore

〈v0, . . . , v̂k, . . . ,vq〉 = (−1)k−j−1〈v0, . . . , v̂j, . . . ,vq〉.
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Thus α(v0,v1, . . . ,vq) = 0 unless v0,v1, . . . ,vq are all distinct. It now follows
immediately from Lemma 6.2 that there is a well-defined homomorphism
∂q:Cq(K)→ Cq−1(K), characterized by the property that

∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉

whenever v0,v1, . . . ,vq span a simplex of K.

Lemma 6.3 ∂q−1 ◦ ∂q = 0 for all integers q.

Proof The result is trivial if q < 2, since in this case ∂q−1 = 0. Suppose
that q ≥ 2. Let v0,v1, . . . ,vq be vertices spanning a simplex of K. Then

∂q−1∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j∂q−1 (〈v0, . . . , v̂j, . . . ,vq〉)

=

q∑
j=0

j−1∑
k=0

(−1)j+k〈v0, . . . , v̂k, . . . , v̂j, . . . ,vq〉

+

q∑
j=0

q∑
k=j+1

(−1)j+k−1〈v0, . . . , v̂j, . . . , v̂k, . . . ,vq〉

= 0

(since each term in this summation over j and k cancels with the correspond-
ing term with j and k interchanged). The result now follows from the fact
that the homomorphism ∂q−1 ◦ ∂q is determined by its values on all oriented
q-simplices of K.

6.3 The Homology Groups of a Simplicial Complex

LetK be a simplicial complex. A q-chain z is said to be a q-cycle if ∂qz = 0. A
q-chain b is said to be a q-boundary if b = ∂q+1c

′ for some (q+1)-chain c′. The
group of q-cycles of K is denoted by Zq(K), and the group of q-boundaries
of K is denoted by Bq(K). Thus Zq(K) is the kernel of the boundary ho-
momorphism ∂q:Cq(K) → Cq−1(K), and Bq(K) is the image of the bound-
ary homomorphism ∂q+1:Cq+1(K) → Cq(K). However ∂q ◦ ∂q+1 = 0, by
Lemma 6.3. Therefore Bq(K) ⊂ Zq(K). But these groups are subgroups of
the Abelian group Cq(K). We can therefore form the quotient group Hq(K),
where Hq(K) = Zq(K)/Bq(K). The group Hq(K) is referred to as the qth
homology group of the simplicial complex K. Note that Hq(K) = 0 if q < 0
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or q > dimK (since Zq(K) = 0 and Bq(K) = 0 in these cases). It can
be shown that the homology groups of a simplicial complex are topological
invariants of the polyhedron of that complex.

The element [z] ∈ Hq(K) of the homology group Hq(K) determined by
z ∈ Zq(K) is referred to as the homology class of the q-cycle z. Note that
[z1 + z2] = [z1] + [z2] for all z1, z2 ∈ Zq(K), and [z1] = [z2] if and only if
z1 − z2 = ∂q+1c for some (q + 1)-chain c.

Proposition 6.4 Let K be a simplicial complex. Suppose that there exists
a vertex w of K with the following property:

• if vertices v0,v1, . . . ,vq span a simplex of K then so do
w,v0,v1, . . . ,vq.

Then H0(K) ∼= Z, and Hq(K) is the zero group for all q > 0.

Proof Using Lemma 6.2, we see that there is a well-defined homomorphism
Dq:Cq(K)→ Cq+1(K) characterized by the property that

Dq(〈v0,v1, . . . ,vq〉) = 〈w,v0,v1, . . . ,vq〉

whenever v0,v1, . . . ,vq span a simplex of K. Now ∂1(D0(v)) = v−w for all
vertices v of K. It follows that

s∑
r=1

nr〈vr〉 −

(
s∑
r=1

nr

)
〈w〉 =

s∑
r=1

nr(〈vr〉 − 〈w〉) ∈ B0(K)

for all
s∑
r=1

nr〈vr〉 ∈ C0(K). But Z0(K) = C0(K) (since ∂0 = 0 by definition),

and thus H0(K) = C0(K)/B0(K). It follows that there is a well-defined
surjective homomorphism from H0(K) to Z induced by the homomorphism

from C0(K) to Z that sends
s∑
r=1

nr〈vr〉 ∈ C0(K) to
s∑
r=1

nr. Moreover this

induced homomorphism is an isomorphism from H0(K) to Z.
Now let q > 0. Then

∂q+1(Dq(〈v0,v1, . . . ,vq〉))
= ∂q+1(〈w,v0,v1, . . . ,vq〉)

= 〈v0,v1, . . . ,vq〉+

q∑
j=0

(−1)j+1〈w,v0, . . . , v̂j, . . . ,vq〉

= 〈v0,v1, . . . ,vq〉 −Dq−1(∂q(〈v0,v1, . . . ,vq〉))
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whenever v0,v1, . . . ,vq span a simplex of K. Thus

∂q+1(Dq(c)) +Dq−1(∂q(c)) = c

for all c ∈ Cq(K). In particular z = ∂q+1(Dq(z)) for all z ∈ Zq(K), and hence
Zq(K) = Bq(K). It follows that Hq(K) is the zero group for all q > 0, as
required.

Example The hypotheses of the proposition are satisfied for the complex
Kσ consisting of a simplex σ together with all of its faces: we can choose w
to be any vertex of the simplex σ.

6.4 Simplicial Maps and Induced Homomorphisms

Any simplicial map ϕ:K → L between simplicial complexes K and L induces
well-defined homomorphisms ϕq:Cq(K)→ Cq(L) of chain groups, where

ϕq(〈v0,v1, . . . ,vq〉) = 〈ϕ(v0), ϕ(v1), . . . , ϕ(vq)〉

whenever v0,v1, . . . ,vq span a simplex of K. (The existence of these induced
homomorphisms follows from a straightforward application of Lemma 6.2.)
Note that ϕq (〈v0,v1, . . . ,vq〉) = 0 unless ϕ(v0), ϕ(v1), . . . , ϕ(vq) are all dis-
tinct.

Now ϕq−1 ◦ ∂q = ∂q ◦ϕq for each integer q. Therefore ϕq(Zq(K)) ⊂ Zq(L)
and ϕq(Bq(K)) ⊂ Bq(L) for all integers q. It follows that any simplicial
map ϕ:K → L induces well-defined homomorphisms ϕ∗:Hq(K)→ Hq(L) of
homology groups, where ϕ∗([z]) = [ϕq(z)] for all q-cycles z ∈ Zq(K). It is a
trivial exercise to verify that if K, L and M are simplicial complexes and if
ϕ:K → L and ψ:L → M are simplicial maps then the induced homomor-
phisms of homology groups satisfy (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

6.5 Connectedness and H0(K)

Lemma 6.5 Let K be a simplicial complex. Then K can be partitioned
into pairwise disjoint subcomplexes K1, K2, . . . , Kr whose polyhedra are the
connected components of the polyhedron |K| of K.

Proof Let X1, X2, . . . , Xr be the connected components of the polyhedron
of K, and, for each j, let Kj be the collection of all simplices σ of K for
which σ ⊂ Xj. If a simplex belongs to Kj for all j then so do all its faces.
Therefore K1, K2, . . . , Kr are subcomplexes of K. These subcomplexes are
pairwise disjoint since the connected components X1, X2, . . . , Xr of |K| are
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pairwise disjoint. Moreover, if σ ∈ K then σ ⊂ Xj for some j, since σ is a
connected subset of |K|, and any connected subset of a topological space is
contained in some connected component. But then σ ∈ Kj. It follows that
K = K1 ∪K2 ∪ · · · ∪Kr and |K| = |K1| ∪ |K2| ∪ · · · ∪ |Kr|, as required.

The direct sum A1⊕A2⊕· · ·⊕Ar of additive Abelian groups A1, A2, . . . , Ar
is defined to be the additive group consisting of all r-tuples (a1, a2, . . . , ar)
with ai ∈ Ai for i = 1, 2, . . . , r, where

(a1, a2, . . . , ar) + (b1, b2, . . . , br) ≡ (a1 + b1, a2 + b2, . . . , ar + br).

Lemma 6.6 Let K be a simplicial complex. Suppose that K = K1 ∪ K2 ∪
· · · ∪Kr, where K1, K2, . . . Kr are pairwise disjoint. Then

Hq(K) ∼= Hq(K1)⊕Hq(K2)⊕ · · · ⊕Hq(Kr)

for all integers q.

Proof We may restrict our attention to the case when 0 ≤ q ≤ dimK,
since Hq(K) = {0} if q < 0 or q > dimK. Now any q-chain c of K can be
expressed uniquely as a sum of the form c = c1 + c2 + · · ·+ cr, where cj is a
q-chain of Kj for j = 1, 2, . . . , r. It follows that

Cq(K) ∼= Cq(K1)⊕ Cq(K2)⊕ · · · ⊕ Cq(Kr).

Now let z be a q-cycle of K (i.e., z ∈ Cq(K) satisfies ∂q(z) = 0). We can
express z uniquely in the form z = z1 + z2 + · · · + zr, where zj is a q-chain
of Kj for j = 1, 2, . . . , r. Now

0 = ∂q(z) = ∂q(z1) + ∂q(z2) + · · ·+ ∂q(zr),

and ∂q(zj) is a (q−1)-chain of Kj for j = 1, 2, . . . , r. It follows that ∂q(zj) = 0
for j = 1, 2, . . . , r. Hence each zj is a q-cycle of Kj, and thus

Zq(K) ∼= Zq(K1)⊕ Zq(K2)⊕ · · · ⊕ Zq(Kr).

Now let b be a q-boundary of K. Then b = ∂q+1(c) for some (q + 1)-
chain c of K. Moreover c = c1 + c2 + · · · cr, where cj ∈ Cq+1(Kj). Thus b =
b1 + b2 + · · · br, where bj ∈ Bq(Kj) is given by bj = ∂q+1cj for j = 1, 2, . . . , r.
We deduce that

Bq(K) ∼= Bq(K1)⊕Bq(K2)⊕ · · · ⊕Bq(Kr).

It follows from these observations that there is a well-defined isomorphism

ν:Hq(K1)⊕Hq(K2)⊕ · · · ⊕Hq(Kr)→ Hq(K)

which maps ([z1], [z2], . . . , [zr]) to [z1 + z2 + · · · + zr], where [zj] denotes the
homology class of a q-cycle zj of Kj for j = 1, 2, . . . , r.
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Let K be a simplicial complex, and let y and z be vertices of K. We
say that y and z can be joined by an edge path if there exists a sequence
v0,v1, . . . ,vm of vertices of K with v0 = y and vm = z such that the line
segment with endpoints vj−1 and vj is an edge belonging to K for j =
1, 2, . . . ,m.

Lemma 6.7 The polyhedron |K| of a simplicial complex K is a connected
topological space if and only if any two vertices of K can be joined by an edge
path.

Proof It is easy to verify that if any two vertices of K can be joined by an
edge path then |K| is path-connected and is thus connected. (Indeed any
two points of |K| can be joined by a path made up of a finite number of
straight line segments.)

We must show that if |K| is connected then any two vertices of K can be
joined by an edge path. Choose a vertex v0 of K. It suffices to verify that
every vertex of K can be joined to v0 by an edge path.

Let K0 be the collection of all of the simplices of K having the property
that one (and hence all) of the vertices of that simplex can be joined to v0

by an edge path. If σ is a simplex belonging to K0 then every vertex of σ can
be joined to v0 by an edge path, and therefore every face of σ belongs to K0.
Thus K0 is a subcomplex of K. Clearly the collection K1 of all simplices of K
which do not belong to K0 is also a subcomplex of K. Thus K = K0 ∪K1,
where K0 ∩ K1 = ∅, and hence |K| = |K0| ∪ |K1|, where |K0| ∩ |K1| = ∅.
But the polyhedra |K0| and |K1| of K0 and K1 are closed subsets of |K|. It
follows from the connectedness of |K| that either |K0| = ∅ or |K1| = ∅. But
v0 ∈ K0. Thus K1 = ∅ and K0 = K, showing that every vertex of K can be
joined to v0 by an edge path, as required.

Theorem 6.8 Let K be a simplicial complex. Suppose that the polyhe-
dron |K| of K is connected. Then H0(K) ∼= Z.

Proof Let u1,u2, . . . ,ur be the vertices of the simplicial complex K. Every
0-chain of K can be expressed uniquely as a formal sum of the form

n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉

for some integers n1, n2, . . . , nr. It follows that there is a well-defined homo-
morphism ε:C0(K)→ Z defined by

ε (n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉) = n1 + n2 + · · ·+ nr.
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Now ε(∂1(〈y, z〉)) = ε(〈z〉 − 〈y〉) = 0 whenever y and z are endpoints of an
edge of K. It follows that ε ◦ ∂1 = 0, and hence B0(K) ⊂ ker ε.

Let v0,v1, . . . ,vm be vertices of K determining an edge path. Then

〈vm〉 − 〈v0〉 = ∂1

(
m∑
j=1

〈vj−1,vj〉

)
∈ B0(K).

Now |K| is connected, and therefore any pair of vertices of K can be joined
by an edge path (Lemma 6.7). We deduce that 〈z〉 − 〈y〉 ∈ B0(K) for all

vertices y and z of K. Thus if c ∈ ker ε, where c =
r∑
j=1

nj〈uj〉, then
r∑
j=1

nj = 0,

and hence c =
r∑
j=2

nj(〈uj〉 − 〈u1〉). But 〈uj〉 − 〈u1〉 ∈ B0(K). It follows that

c ∈ B0(K). We conclude that ker ε ⊂ B0(K), and hence ker ε = B0(K).
Now the homomorphism ε:C0(K) → Z is surjective and its kernel is

B0(K). Therefore it induces an isomorphism from C0(K)/B0(K) to Z.
However Z0(K) = C0(K) (since ∂0 = 0 by definition). Thus H0(K) ≡
C0(K)/B0(K) ∼= Z, as required.

On combining Theorem 6.8 with Lemmas 6.5 and 6.6 we obtain immedi-
ately the following result.

Corollary 6.9 Let K be a simplicial complex. Then

H0(K) ∼= Z⊕ Z⊕ · · · ⊕ Z (r times),

where r is the number of connected components of |K|.
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