
LECTURE 4: SINGULAR HOMOLOGY OF CONTRACTIBLE SPACES

In the last lecture we introduced relative singular homology of a pair of spaces. Let us quickly
recall the construction. Given a space X and a subspace A together with its inclusion i : A → X
then we have the induced short exact sequence of singular chain complexes:

0→ C(A)→ C(X)→ C(X,A) = C(X)/C(A)→ 0

The quotient complex C(X,A) is the relative singular chain complex and its homology is the relative
singular homology of the pair :

Hn(X,A) = Hn(C(X,A))

By construction of the quotient complex chains in it can be represented by singular chains c in X.
Moreover, such a chain c ∈ Cn(X) represents a cycle in the relative chain complex if its usual
singular boundary ∂(c) lies in the image of Cn−1(A) → Cn−1(X). In this situation we say that c
is a cycle mod A or a cycle relative to A. Thus, relative singular homology classes, in general, can
not be represented by cycles in X but always by cycles relative to A. We leave it to the reader to
define the category Top2 of pairs of spaces and to remark that relative singular chain complexes
and relative singular homology groups define functors C : Top2 → Ch(Z) and Hn : Top2 → Ab
respectively (Exercise!).

The aim of this and the next lecture is to show that (relative) singular homology is homotopy-
invariant. Recall that it is an immediate consequence of the functoriality of singular homology that
homeomorphic spaces have naturally isomorphic homology groups. We want to show next that this
also holds true for homotopy equivalent spaces. In fact, this will be a consequence of the more
general result that homotopic maps induce the same maps on singular homology.

We begin by splitting of an algebraic definition which ‘mimics’ the notion of a homotopy at the
level of chain complexes. With our main application in mind we restrict attention to non-negative
chain complexes. Recall that given two chain complexes C, D of abelian groups, then a chain
map f : C → D consists of a family of group homomorphisms fn : Cn → Dn which commute with
the differentials.

Definition 1. Let C, D ∈ Ch(Z) be chain complexes and let f, g : C → D be chain maps. A chain
homotopy s from f to g, denoted s : f ' g, consists of group homomorphisms sn : Cn → Dn+1 for
all n ≥ 0 such that:

∂ ◦ sn + sn−1 ◦ ∂ = gn − fn, n ≥ 1, and ∂ ◦ s0 = g0 − f0
Two chain maps f and g are chain homotopic, denoted f ' g, if there is such a chain homotopy.

Thus, in the situation of the definition we have the following diagram in which the vertical homo-
morphisms are given by gn − fn for the corresponding value of n:
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One reason why we are interested in this concept is given by Lemma 3. But let us first collect
some elementary facts about chain homotopies (the precise formulations are left to the reader).

Lemma 2. The chain homotopy relation defines an equivalence relation on the set of chain maps
between two chain complexes. Moreover, it is compatible with composition, addition, and the for-
mation of additive inverses.

Proof. Exercise. �

Lemma 3. Let C, D ∈ Ch(Z) and let us consider chain maps f, g : C → D. If f and g are chain
homotopic then the induced maps in homology are equal, i.e., we have:

Hn(f) = Hn(g) : Hn(C)→ Hn(D), n ≥ 0

Proof. Let s : f ' g be a chain homotopy and let us consider a homology class ω = [zn] ∈ Hn(C).
For n ≥ 1 we calculate

Hn(g)(ω) = [gn(zn)] = [fn(zn) + ∂sn(zn) + sn−1∂(zn)] = [fn(zn)] = Hn(f)(ω)

The third equality uses that zn is a cycle and that a homology class is not changed if we add a
boundary. In degree zero it is even slightly simpler since we can conclude the proof by:

H0(g)(ω) = [g0(z0)] = [f0(z0) + ∂s0(z0)] = [f0(z0)] = H0(f)(ω) �

Thus, in order to establish the homotopy invariance of singular homology we have to show
that homotopic maps between topological spaces induce chain homotopic maps between the corre-
sponding singular chain complexes. However, this will require some preparation and will only be
completed in the next lecture.

Let us begin by recalling the quotient of a space by a subspace. We first construct the underlying
set of the quotient space. Any pair of spaces (X,A) with inclusion map i : A → X induces an
equivalence relation on X, namely the equivalence relation ∼A generated by i(a) ∼A i(a′) for all
a, a′ ∈ A. Let us denote the set of equivalence classes with respect to ∼A by X/A:

X/A = X/ ∼A
There is the natural quotient map q : X → X/A which sends an element x ∈ X to its equivalence
class [x] ∈ X/A. The equivalence class of i(a) for an arbitrary a ∈ A will be denoted by ∗. We
endow X/A with the finest topology such that the quotient map q : X → X/A is continuous. In
other words, a subset U ⊂ X/A is open by definition if and only if q−1(U) is open in X. It is
immediate from the construction that the composition q ◦ i : A → X → X/A is constant with
value ∗. This quotient space construction has the following universal property.

Lemma 4. Let (X,A) be a pair of spaces and let (X/A, q) be the quotient space X/A together with
its quotient map q : X → X/A. Given a further such pair (Y, r) consisting of a topological space Y
and a continuous map r : X → Y such that the composition r ◦ i : A→ Y is constant then there is
a unique continuous map r′ : X/A→ Y such that r′ ◦ q = r:

A
i //

∗′ **

X
q

//

r

��

X/A

∃!r′ssY

Proof. Exercise. �
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We now apply this to the cone construction of a topological space. Let X be a topological space
then the product I ×X where I = [0, 1] is the cylinder of X. The cone CX of X is obtained from
the cylinder by collapsing the top:

I ×X p→ CX = I ×X/{1} ×X
Elements of this space are equivalence classes [t, x], t ∈ I, x ∈ X and we have [1, x] = [1, x′] for
all x, x′ ∈ X. The point given by [1, x] is called the apex of the cone and will be denoted by ∗. We
obtain an inclusion of X in the cone by composing the inclusion X → I ×X : x 7→ (0, x) with the
quotient map to CX:

i : X → I ×X p→ CX : x 7→ [0, x]

Lemma 5. Let f : X → Y be a map of topological spaces. Then f is homotopic to a constant map
if and only if f extends over the cone CX in the sense that there is a map K : CX → Y such that
the following diagram commutes:

X
f

//

i

��

Y

CX

K

=={{{{{{{{

Proof. Given a homotopy H : I ×X → Y with H0 = f and H1 = κy the constant map at y ∈ Y
obviously factors over CX to give the desired map K. Conversely, if we have such a map K then
we can precompose it with p : I × X → CX to obtain a homotopy H between f and a constant
map. That these two assignments are inverse bijections is just a special case of the last lemma. �

More precisely, the proof shows that there is a bijection between homotopies to constant maps and
extensions over the cone. In the special case of X = ∆n we have a homeomorphism C∆n ∼= ∆n+1

such that the apex of the cone corresponds to e0 ∈ ∆n+1. A precise formula for this homeomorphism
reads as follows where we use the short hand notation t′ = t1 + . . . + tn+1 and where ti are the
barycentric coordinates:

φ : ∆n+1 ∼=→ C∆n : (t0, . . . , tn+1) 7→
{

[t0, t1/t
′, . . . , tn+1/t

′] , t′ 6= 0
∗ , t′ = 0

Moreover, this homeomorphism has the nice property that it identifies the face map

d0 : ∆n → ∆n+1 : (t0, . . . , tn) 7→ (0, t0, . . . , tn)

with the inclusion i : ∆n → C∆n, i.e., we have φ ◦ d0 = i : ∆n → C∆n. Thus, we have a bijection
between homotopies of σ : ∆n → Y to constant maps and extensions of σ to maps s(σ) : ∆n+1 → Y
such that s(σ) ◦ d0 = σ.

Proposition 6. Let X be a contractible space, then all homology groups Hn(X) vanish for n ≥ 1.

Proof. Let X be contractible, i.e., we can find a point x0 ∈ X and a homotopy H : I × X → X
with H0 = idX and H1 = κx0

, the constant map at x0. Now, let σ : ∆n → X be a basis element of
the singular chain group Cn(X). Precomposition of H with idI ×σ yields a further such homotopy
as indicated in the first row of the following diagram:

I ×∆n id×σ
//

��

I ×X H // X

C∆n ∼= ∆n+1 sn(σ)

::
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Now, the composition H ◦ (id × σ) gives us a homotopy to a constant map so that it corresponds
to a unique map sn(σ) : ∆n+1 → X. Additive extension gives us a group homomorphism:

sn : Cn(X)→ Cn+1(X)

By construction, it follows that we have the following relations for the faces of sn(σ):

d0(snσ) = σ, n ≥ 0, and di(sn(σ)) = sn−1(di−1(σ)), i = 1, . . . , n+ 1, n ≥ 1

In the remaining case n = 0 and i = 1 we have d1(s0σ) = x0 ∈ C0(X), where we use the standard
convention that x0 also denotes the map ∆0 → X sending the unique point in ∆0 to x0. But these
relations allow us to make the following calculation for n ≥ 1:

∂sn(σ) =

n+1∑
i=0

(−1)idi(sn(σ))

= d0(sn(σ)) +

n+1∑
i=1

(−1)idi(snσ)

= σ +

n+1∑
i=1

(−1)isn−1(di−1σ)

= σ − sn−1(∂σ)

By linear extension we thus deduce for n ≥ 1 the relation ∂ ◦ sn + sn−1 ◦ ∂ = id. In the remaining
degree n = 0 where an 0-simplex is just given by a point x : ∆0 → X we have:

∂s0(x) = d0(s0(x))− d1(s0(x)) = x− x0
Thus, we have the relation ∂ ◦ s0 = id − ε0 where ε0 : C0(X) → C0(X) sends each basis element
to x0. As an upshot of these calculations we thus constructed a chain homotopy s : id→ ε where ε
is the chain map (!) which is zero in all positive degrees and ε0 in degree 0. Thus, by Lemma 3 we
have id = 0: Hn(X)→ Hn(X) for n ≥ 1 which can only be the case if these groups vanish. �

This proposition implies that the homology of a large family of spaces vanishes in positive
dimensions. This applies to points, vector spaces, discs, simplices, products of such spaces etc. In
some sense we are happy with this result since the motivational idea of homology was that we want
to have invariants which measure the ‘geometric complexity’ of spaces. And it is good to know that
the invariants are trivial in these examples.

Furthermore, this result (applied to products of simplices) is essential in our approach to the
homotopy-invariance of singular homology. Given two spaces X, Y we want to relate the singular
chain complexes C(X), C(Y ), C(X×Y ) and this relation is to be natural in the spaces. Recall that
given maps f : X → X ′ and g : Y → Y ′ then there is the product map (f, g) : X × Y → X ′ × Y ′
which sends (x, y) to (f(x), g(y)).

Theorem 7. Given topological spaces X, Y then there are bilinear maps

× : Cp(X)× Cq(Y )→ Cp+q(X × Y ) : (c, d) 7→ c× d

for all p, q ≥ 0 called cross product maps with the following properties:
i) For x ∈ X, y ∈ Y, σ : ∆p → X, and τ : ∆q → Y we have:

x× τ : ∆q ∼= ∆0 ×∆q (x,τ)→ X × Y and σ × y : ∆p ∼= ∆p ×∆0 (σ,y)→ X × Y
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ii) The cross product is natural in X and Y , i.e., for maps f : X → X ′ and g : Y → Y ′ we have:

(f, g)∗(c× d) = f∗(c)× g∗(d) in Cp+q(X
′ × Y ′)

iii) The boundary ∂ is a derivation with respect to × in the sense that for c ∈ Cp(X) and d ∈ Cq(Y )
we have:

∂(c× d) = ∂(c)× d + (−1)pc× ∂(d) in Cp+q−1(X × Y )

We will begin the next lecture with a proof of this theorem. A crucial step in this proof will use
that spaces of the form ∆p ×∆q have trivial homology groups in positive dimensions.


