
SECTION 1: SINGULAR HOMOLOGY WITH COEFFICIENTS

In this section we introduce a variant of singular homology, namely singular homology with
coefficients. Recall that in the previous course we introduced singular homology groups of spaces
and we established certain fundamental theorems about these invariants. Using these fundamental
theorems only we were able to show that singular homology and cellular homology agree on CW
complexes – a result which was already seen to be useful in specific calculations.

This suggests that there should be a purely axiomatic approach to homology theory which
is based on the above-mentioned fundamental theorems. As shown by Eilenberg and Steenrod,
this is indeed possible. They introduced the so-called Eilenberg–Steenrod axioms for homology
theories. By definition a homology theory consists of functors hk, k ≥ 0, from the category of pairs
of topological spaces to abelian groups together with natural transformations (called connecting
homomorphisms)

δ : hk(X,Y )→ hk−1(Y, ∅), k ≥ 1.

This data has to satisfy the long exact sequence axiom, the homotopy axiom, the excision axiom,
and the dimension axiom. We let you guess the precise form of the first three axioms, but we want
to be specific about the dimension axiom. It asks that hk(∗, ∅) is trivial in positive dimensions.
Thus, the only possibly non-trivial homology group of the point sits in degree zero and that abelian
group h0(∗, ∅) is referred to as the group of coefficients of the homology theory.

So, parts of the previous course can be summarized by saying that singular homology theory
defines a homology theory in the sense of Eilenberg–Steenrod with integral coefficients. In this section
we introduce singular homology with coefficients in an abelian group A, and basically show that
this defines a homology theory in the sense of Eilenberg–Steenrod with A as group of coefficients.
As a punchline, this allows us to ‘work with singular homology with coefficients as in the integral
case’.

Our original motivation to consider singular homology was that we wanted understand a given
space X by studying formal finite sums of singular simplices in it. Such a formal sum can always
be written in the form

Σmi=1niσi with σi : ∆k → X and ni ∈ Z,

where ∆k denotes the geometric k-simplex. Now, we want to replace the ‘coefficients’ ni ∈ Z by
elements of an arbitrary abelian group A, and this is formally achieved using the tensor product of
abelian groups. We begin by recalling some basics about the tensor product.

Definition 1. Let A and B be abelian groups. A tensor product A⊗B of A and B is an abelian
group A ⊗ B together with a bilinear map A × B → A ⊗ B which is initial in the sense that for
every abelian group C and every bilinear map A×B → C there is a unique group homomorphism
A⊗B → C such that the following diagram commutes

A×B //

∀
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As with every definition by a universal property, it follows easily from the definition that tensor
products are, in a certain precise sense, unique up to unique isomorphism. In the exercises you are
asked to show that tensor products always exist. If A×B → A⊗B is ‘the’ universal bilinear map,
then we write a ⊗ b ∈ A ⊗ B for the image of (a, b). Note that the bilinearity of this map implies
the manipulation rules

(1) (a1 + a2)⊗ b = a1 ⊗ b+ a2 ⊗ b,
(2) a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2,
(3) (na)⊗ b = n(a⊗ b) = a⊗ (nb), n ∈ Z.

If follows from the construction that every element in A⊗B can be written as a finite sum Σmi=1ai⊗bi
(but, in general, not every element is of the form a⊗ b!).

In the following proposition we collect some fundamental properties of the tensor product con-
struction. Once we know that tensor products exist, all these properties follow from the universal
property (see the exercises). We denote by Ab the category of abelian groups and group homomor-
phisms.

Proposition 2. (1) The tensor product defines a functor ⊗ : Ab× Ab→ Ab.
(2) The tensor product is symmetric, i.e., there are natural isomorphisms A⊗B ∼= B ⊗A.
(3) There are isomorphisms 0⊗A ∼= 0 ∼= A⊗ 0 where 0 is the trivial abelian group.
(4) The canonical map

⊕
i∈I(Ai ⊗ B) → (

⊕
i∈I Ai) ⊗ B is a natural isomorphism as is the

canonical map
⊕

i∈I(A⊗Bi)→ A⊗ (
⊕

i∈I Bi).

Example 3. (1) There are natural isomorphisms Z⊗A ∼= A ∼= A⊗ Z.
(2) There are isomorphisms Z/pZ⊗ Z/qZ ∼= Z/rZ where r = gcd(p, q) is the greatest common

divisor of p and q.

Note that this example together with the above properties allows us to explicitly calculate tensor
products of arbitrary finitely generated abelian groups. A further consequence of these properties
is that the partial tensor product functors are additive functors. Before we make this notion precise
let us recall that for abelian groups A,A′ the set of group homomorphisms from A to A′ is itself
an abelian group. The addition is defined pointwise and the zero homomorphism 0: A→ A′ is the
neutral element. Now, the functor −⊗B : Ab→ Ab is additive in the following sense.

(1) For the zero map 0: A→ A′ we have 0⊗ idB = 0: A⊗B → A′ ⊗B.
(2) If f, g : A→ A′ are group homomorphisms, then

(f + g)⊗ idB = f ⊗ idB + g ⊗ idB : A⊗B → A′ ⊗B.

Note that the first property is a consequence of the second one, but is mentioned explicitly here in
order to emphasize. In the following lemma, Ch≥0(Z) denotes the category of chain complexes of
abelian groups and chain maps.

Lemma 4. Let A be an abelian group and let C,D be chain complexes of abelian groups.

(1) The tensor product (−) ⊗ A : Ab → Ab induces a functor (−) ⊗ A : Ch≥0(Z) → Ch≥0(Z)
defined by the formula (C ⊗A)n = Cn ⊗A.

(2) If f, g : C → D are chain homotopic, then so are f ⊗ idA, g ⊗ idA : C ⊗A→ D ⊗A.

Proof. The first property is immediate since − ⊗ A preserve zero homomorphisms so that a de-
greewise definition will do the job. Recall that the defining formula for chain homotopies uses only
compositions and sums of homomorphisms. Since both are preserved by − ⊗ A also the second
claim is immediate. �
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Given a topological space X, we denote its singular chain complex by C(X) ∈ Ch≥0(Z). Recall
that C(X) consists of the singular chain groups Ck(X) which are free abelian groups in each degree.
We refer to this by saying that C(X) is levelwise free. If A is an abelian group, then the singular
chain complex C(X;A) of X with coefficients in A is given by

C(X;A) = C(X)⊗A.
Thus, C(X;A) consists of the abelian groups Ck(X;A) = Ck(X) ⊗ A, k ≥ 0, together with differ-
entials

∂ ⊗ idA : Ck(X)⊗A→ Ck−1(X)⊗A, k ≥ 1.

Definition 5. Let X be a space and let A be an abelian group. The k-th singular homology
group Hk(X;A) of X with coefficients in A is given by

Hk(X;A) = Hk(C(X;A)), k ≥ 0.

Obviously, singular homology with coefficients Hk(−;A) is a functor from the category Top of
topological spaces to Ab which is defined as the composition

Hk(−;A) : Top
C(−)→ Ch≥0(Z)

(−)⊗A→ Ch≥0(Z)
Hk→ Ab.

Example 6. (1) Since the functor (−) ⊗ Z : Ab → Ab is naturally isomorphic to the identity
functor, we obtain natural isomorphisms

C(X;Z) ∼= C(X) and H∗(X;Z) ∼= H∗(X).

Thus, singular homology with integral coefficients is simply singular homology as
studied in the previous course.

(2) The singular homology Hk(∗;A) is trivial in positive dimensions and is isomorphic to A in
the case of k = 0.

(3) Singular homology with coefficients is ‘additive’. More precisely, let X be a space and let
Xα → X,α ∈ π0(X), be the inclusions of its path-components. Then the canonical map⊕

α

Hk(Xα;A)→ Hk(X;A), k ≥ 0,

is an isomorphism.

It is easy to define a relative version of singular homology with coefficients. If A is an abelian
group and (X,Y ) a pair of spaces, then the relative singular chain complex C(X,Y ;A) of
(X,Y ) with coefficients in A is

C(X,Y ;A) = C(X,Y )⊗A.
One might wonder if one shouldn’t instead use the quotient complex of C(X;A) by C(Y ;A) as
definition for C(X,Y ;A), and we will soon see that both definitions would agree.

Definition 7. Let (X,Y ) be a pair of spaces and let A be an abelian group. The k-th relative
singular homology Hk(X,Y ;A) of (X,Y ) with coefficients in A is

Hk(X,Y ;A) = Hk(C(X,Y ;A)), k ≥ 0.

Also relative singular homology Hk(−;A) with coefficients defines a functor, which, denoting the
category of pairs of spaces by Top2, is the composition

Hk(−;A) : Top2
C(−)→ Ch≥0(Z)

(−)⊗A→ Ch≥0(Z)
Hk→ Ab.
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Having the basic notions in place, let us now convince ourselves that homology with coefficients
shares key formal features of homology with integral coefficients. Many of them follow almost for
free from the work done in the previous course. We know already that homology with coefficients
defines a functor which satisfies the dimension axiom and is ‘additive’ in the sense of Example 6.

As a next step, let us establish the long exact sequence of a pair. For this purpose, we recall
that for a pair of spaces (X,Y ) there is the defining short exact sequence of chain complexes

0→ C(Y )→ C(X)→ C(X,Y )→ 0.

One special feature of these short exact sequences is that in each dimension this sequence splits
(note that we are not saying that the sequence splits as a sequence of chain complexes, i.e., the
chosen sections in the various degrees do not necessarily assemble to a chain map!). In fact, this is
a special case of the following lemma.

Lemma 8. Let 0 → A′
i→ A

p→ A′′ → 0 be a short exact sequence of abelian groups such that A′′

is free. Then the sequence splits, i.e., there is a homomorphism s : A′′ → A such that ps = idA′′ .

Proof. Let {a′′j }j∈J be a basis for the free abelian group A′′. Since p : A → A′′ is surjective, we
can choose elements aj ∈ A, j ∈ J, such that p(aj) = a′′j . By the universal property of free abelian
groups this extends uniquely to a group homomorphism s : A′′ → A and it is immediate that this
defines a section of p. �

Recall that a functor F : Ab→ Ab is additive if it satisfies the equation F (f + g) = F (f) +F (g)
for all group homomorphisms f, g : A→ B. In general, it is not true that an additive functor sends
short exact sequences to short exact sequences. We will see counterexamples in the next section.
However, a convenient fact about split short exact sequences of abelian groups and hence levelwise
split short exact sequences of chain complexes is that they are preserved by all additive functors.

Lemma 9. Let F : Ab→ Ab be an additive functor.

(1) By a levelwise application we obtain an induced functor F : Ch≥0(Z)→ Ch≥0(Z).
(2) The induced functor F : Ch≥0(Z)→ Ch≥0(Z) sends chain homotopies to chain homotopies.
(3) If 0 → A′ → A → A′′ → 0 is a split short exact sequence of abelian groups then so is its

image 0 → F (A′) → F (A) → F (A′′) → 0. Similarly, if 0 → C ′ → C → C ′′ → 0 is a
levelwise split short exact sequence of chain complexes then the same is true for the image
0→ F (C ′)→ F (C)→ F (C ′′)→ 0.

Proof. See Exercise Sheet 1. �

If we apply this lemma to (−)⊗A : Ab→ Ab, then we obtain the following result.

Theorem 10. (Long exact sequence of a pair)
Let (X,Y ) be a pair of spaces and let A be an abelian group. Then there is a natural long exact
sequence in relative homology,

. . .→ H1(X,Y ;A)→ H0(Y ;A)→ H0(X;A)→ H0(X,Y ;A)→ 0.

Proof. By Lemma 8, the short exact sequence 0 → C(Y ) → C(X) → C(X,Y ) → 0 is levelwise
split. The same is true for 0→ C(Y ;A)→ C(X;A)→ C(X,Y ;A)→ 0 by Lemma 9 applied to the
additive functor (−) ⊗ A. Thus this is, in particular, a short exact sequence of chain complexes.
To conclude we invoke the existence of the natural long exact homology sequence associated to a
short exact sequence of chain complexes. �
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The fact that singular homology with coefficients is homotopy invariant follows immediately from
the results established so far.

Theorem 11. (Homotopy invariance)
Singular homology with coefficients is a homotopy invariant functor.

Proof. If f, g : X → X ′ are homotopic maps, then the induced maps f∗, g∗ : C(X) → C(X ′) are
chain homotopic. By Lemma 3 also f∗, g∗ : C(X;A) → C(X ′;A) are chain homotopic, and these
maps hence induce the same maps in homology, f∗ = g∗ : Hk(X;A)→ Hk(X ′;A), k ≥ 0. �

The excision property is more subtle. In fact, the way we present it here, it relies on a non-
trivial, important algebraic fact. To begin with let us recall the statement of the excision theorem
for integral homology. If U ⊆ Y ⊆ X are spaces such that the closure of U lies in the interior of Y ,
then we have isomorphisms

Hk(X − U, Y − U)
∼=→ Hk(X,Y ), k ≥ 0.

More precisely, these isomorphisms are induced by the chain map C(X − U, Y − U) → C(X,Y )
which in turn comes from the inclusion (X−U, Y −U)→ (X,Y ). Chain maps having the property
that they induce isomorphisms in homology are very important in many different situations and
hence deserve a special name.

Definition 12. Let f : C → D be a chain map.

(1) The map f is a quasi-isomorphism if the induced maps f∗ : Hk(C)→ Hk(D) are isomor-
phisms for all k ≥ 0.

(2) The map f is a chain homotopy equivalence if there is a chain map g : D → C such
that g ◦ f and f ◦ g are chain homotopic to the respective identities.

Proposition 13. Every chain homotopy equivalence is a quasi-isomorphism.

Proof. Let f : C → D be a chain homotopy equivalence and let g : D → C be such that gf ' id
and fg ' id. Then the induced maps in homology f∗ : Hk(C)→ Hk(D), g∗ : Hk(D)→ Hk(C) are
inverse isomorphisms because f∗g∗ = (fg)∗ = id∗ = id and similarly in the other direction. The
second equality holds because chain homotopic maps induce the same maps in homology. �

Any chain map g as in the proof is called an inverse chain homotopy equivalence. One
might wonder if there is also a converse to the statement of the proposition. The following example
shows that in general this is not the case.

Example 14. Let us consider the following short exact sequence 0 → Z 2→ Z → Z/2Z → 0,
where the undecorated map is the quotient map. As with every short exact sequence, this can be
reinterpreted as a chain map,

· · · // 0 //

��

0 //

��

Z

��

2 // Z

��

· · · // 0 // 0 // 0 // Z/2Z.

Moreover, the fact that we started with a short exact sequence precisely means that this chain
map is a quasi-isomorphism. It is an exercise to show that this quasi-isomorphism is not a chain
homotopy equivalence (note that Z/2Z is torsion).
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Thus, in general, not every quasi-isomorphism is a chain homotopy equivalence. One of the good
properties of chain homotopy equivalences is as follows.

Lemma 15. Let F : Ab → Ab be an additive and let f : C → D be a chain map. If f is a chain
homotopy equivalence, then so is F (f) : F (C)→ F (D).

Proof. This is immediate since we already know that additive functors send chain homotopies to
chain homotopies. �

This property is not enjoyed by arbitrary quasi-isomophisms as we will see in the following section.
Thus, in general, additive functors do not perserve quasi-isomorphisms between arbitrary chain
complexes. However, for nice chain complexes this is the case thanks to the following important
theorem.

Theorem 16. Let C,D ∈ Ch≥0(Z) be levelwise free. Every quasi-isomorphism f : C → D is a
chain homotopy equivalence.

The proof of this theorem is non-trivial. On the next few exercise sheets there will be various
steps with hints culminating in a proof of this theorem. These steps will be of independent interest,
as they introduce some basic constructions from homological algebra which are used a lot.

For now let us use this theorem. With this theorem at hand, we can establish the excision
property for homology with coefficients.

Theorem 17. (Excision property)
Let U ⊆ Y ⊆ X be spaces such that the closure of U lies in the interior of Y and let A be an abelian
group. Then the map C(X − U, Y − U ;A)→ C(X,Y ;A) is a quasi-isomorphism.

Proof. Note that the point-set topology assumptions are precisely the ones from the excision the-
orem for integral singular homology. Thus, the chain map C(X − U, Y − U) → C(X,Y ) is a
quasi-isomorphism. Since both chain complexes are levelwise free it follows from the previous the-
orem that C(X − U, Y − U) → C(X,Y ) is actually a chain homotopy equivalence. The additive
functor −⊗A : Ch≥0(Z)→ Ch≥0(Z) sends chain homotopy equivalences to chain homotopy equiv-
alences, hence C(X − U, Y − U ;A)→ C(X,Y ;A) is also a chain homotopy equivalence. It follows
from Proposition 13 that this chain map is thus also a quasi-isomorphism. �

With this final step, we have extended the main formal properties of singular homology to singular
homology with coefficients. We are now in position to discuss cellular homology with coefficients.
Using literally the same arguments as in the integral case, one studies the behavior of singular
homology with coefficients with respect to attaching cells and shows that it ‘vanishes above the
dimension’. Recall that these were key steps in the classical case. Instead of redoing this, we
postpone this discussion until the following section as some of the facts are trivial consequences of
the main theorem of that section.

Let us content ourselves by summarizing the work done so far.

Theorem 18. Singular homology with coefficients in an abelian group A defines a homology theory
in the sense of Eilenberg–Steenrod. The group of coefficients of H∗(−;A) is A.

The integral homology groups of a space are abelian groups as are the homology groups with
coefficients. However, as we show next, if the coefficient group is an R-module for some commutative
ring R (with unit element 1), then this structure is inherited by the homology groups. Let us recall
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that a (left) R-module is a pair (M,λ : R ×M → M) consisting of an abelian group M and a
bilinear map

λ : R×M →M, (r,m) 7→ λ(r,m) = rm = r ·m,
the (left) multiplication by scalars, such that (r1r2)m = r1(r2m) and 1 ·m = m. A homomorphism
f : M →M ′ of R-modules is a group homomorphism f : M →M ′ such that f(rm) = rf(m). This
defines the category R-Mod of (left) R-modules. Note that a module over R = Z is simply an
abelian group, while a module over a field is the same as a vector space.

Lemma 19. Let A be an abelian group, R a commutative ring, and M an R-module. The map

R×A×M → A×M : (r, a,m) 7→ (a, rm)

induces an R-module structure on A⊗M . This defines a functor ⊗ : Ab×R-Mod→ R-Mod.

Proof. For each r ∈ R, the map of sets A×M id×r→ A×M → A⊗M is easily seen to be bilinear.
Additivity in the second variable for example amounts to observing that

a⊗ (r(m1 +m2)) = a⊗ (rm1 + rm2) = a⊗ rm1 + a⊗ rm2.

Thus, by the universal property of the tensor product, there is a unique induced group homomor-
phism λ(r,−) : A⊗M → A⊗M such that

A×M
id×r

//

��

A×M

��

A⊗M
λ(r,−)

// A⊗M

commutes. The uniqueness implies that this λ : R × (A ⊗ M) → A ⊗ M defines an R-module
structure and also that we obtain a functor that way. �

We leave it to the reader to check the details and also that ⊗ : Ab×R-Mod→ R-Mod is a functor
which is additive in both variables. In particular, given an R-module M we obtain an induced
functor − ⊗M : Ch≥0(Z) → Ch≥0(R), where Ch≥0(R) denotes the category of chain complexes of
R-modules and R-linear chain maps. The homology groups of chain complex of R-modules are
naturally R-modules, since homology is simply defined by passing to a subquotient (‘kernel modulo
image’).

Corollary 20. Let R be a commutative ring and let M be an R-module. Then singular homology
with coefficients in M defines a functor

Hk(−;M) : Top2 → R-Mod, k ≥ 0.

In particular, if M = K is a field, then we obtain functors Hk(−;K) : Top2 → K-Vect to the
category K-Vect of vector spaces over K.

Proof. The first part is immediate from the above remarks. In fact, it suffices to observe that in
our situation there is the following sequence of functors

Hk(−;M) : Top2
C(−)→ Ch≥0(Z)

(−)⊗M→ Ch≥0(R)
Hk→ R-Mod.

For the second statement, observe that the multiplication K ×K → K of the field turns K into a
vector space over K. Thus, we can specialize the first statement to M = K ∈ K-Vect. �
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The cases K = Q,R,C are particularly important, giving rise to rational homology, real
homology, and complex homology, respectively. The associated homology groups in these
cases are thus rational, real, or complex vector spaces. In particular, these homology groups have
no torsion elements, which makes them a simpler, first approximation of the integral homology
groups. Also, we want to mention that H∗(−;R) and H∗(−;C) are of quite some use in differential
geometry and complex geometry, respectively.

The aim of the following section is to study the relation between H∗(−;A) and H∗(−;Z).


