Université des Sciences et Technologies de Lille Master Math, S2 (2007-08) Topologie algébrique, Feuille 3

§1. Compacité

1. Exercice

- **1.1)** Les espaces $SO(n,\mathbb{R})$, $O(n,\mathbb{R})$ sont-ils compacts?
- **1.2)** Les espaces $SU(n,\mathbb{C})$, $U(n,\mathbb{C})$ sont-ils compacts? *Indication:* On pourra utiliser la norme

$$||A|| = \sqrt{\operatorname{Tr}(A^* \cdot A)} = \left(\sum_{1 \le i, j \le n} \bar{A}_{ij} \cdot A_{ij}\right)^{1/2}$$

sur l'espace $M(n, \mathbb{C})$ des matrices à coefficients complexes, et sa version réelle, pour montrer que ces espaces sont bornés.

1.3) Les espaces $SL(n,\mathbb{R})$, $GL(n,\mathbb{R})$ sont-ils compacts?

2. Exercice

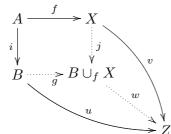
Soit $f:X\to Y$ une application continue bijective avec X compact. Montrer que f est automatiquement un homéomorphisme.

Indication : Que peut-on dire de f(F), quand F est une partie fermée de X?

§2. Quotients et identifications

Dans les exercices qui suivent, on se donne un espace topologique B, un sous espace $A \subset B$ et une application continue $f: A \to X$. On notera $i: A \to B$ l'application d'inclusion. On considère l'espace $B \cup_f X$ obtenu en faisant l'identification $a \simeq f(a)$ des éléments $a \in A$ avec leur image $f(a) \in X$ par f. On a des applications naturelles $g: B \to B \cup_f X$ et $j: X \to B \cup_f X$ telles que gi = jf.

On rappelle que $Y=B\cup_f X$ satisfait la propriété suivante: tout diagramme commutatif de la forme



possède un unique morphisme pointillé $w: B \cup_f X \to Z$ qui le complète. On dit aussi que $B \cup_f X$ est un pushout de i par f.

Le quotient B/A est le cas particulier de cette construction où X est réduit à un point $X = \{pt\}$ et $f: A \to pt$ est l'application constante. On dit aussi que B/A est l'espace obtenu en identifiant A à un seul point.

3. Exercice

3.1) Montrer que la propriété universelle du pushout caractérise $Y = B \cup_f X$. Si on a un espace Y' qui vérifie la même propriété, alors on peut construire des applications continues $w: Y \to Y'$ et $w': Y' \to Y$ telles que w'w = Id et ww' = Id.

BF, Courriel: Benoit.Fresse@math.univ-lille1.fr

3.2) Expliciter la propriété universelle du quotient B/A.

4. Exercice

Identifier l'espace $]-\infty,0]\cup_i[0,+\infty[$, où $i:\{0\}\to[0,+\infty[$ est l'application naturelle i(0)=0.

5. Exercice (le cercle dans tout ses états)

On utilise

$$S^1 = \{(x, y) \in \mathbb{R}^2 \text{ tels que } x^2 + y^2 = 1\}$$

comme modèle de référence pour le cercle.

5.1) Montrer que l'on a un pushout de la forme:

$$\{0,1\} \longrightarrow [0,1]$$

$$\downarrow \qquad \qquad \downarrow$$

$$[0,1] \longrightarrow S^1$$

5.2) Montrer que l'on a un homéomorphisme $[0,1]/\{0,1\} \stackrel{\simeq}{\to} S^1$.

5.3) Montrer que l'on a un homéomorphisme $\mathbb{R}/\mathbb{Z} \to S^1$. On pourra utiliser le résultat de la question précédente ou l'application exponentielle.

6. Exercice (la sphère dans tout ses états)!

On utilise

$$S^{n-1} = \{(x_1, \dots, x_n) \in \mathbb{R}^n \text{ tels que } x_1^2 + \dots + x_n^2 = 1\}$$

comme modèle de référence pour la sphère de dimension n-1 et

$$D^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \text{ tels que } x_1^2 + \dots + x_n^2 \le 1\}$$

comme modèle de référence pour la boule de dimension n.

6.1) Montrer que l'on a un homéomorphisme $S^{n-1} \times [0,1]/S^{n-1} \times \{0\} \stackrel{\simeq}{\to} D^n$.

6.2) Montrer que l'on a un pushout de la forme:

$$S^{n-1} \longrightarrow D^n$$

$$\downarrow \qquad \qquad \downarrow$$

$$D^n \longrightarrow S^n$$

6.3) Montrer que l'on a un homéomorphisme $D^n/S^{n-1} \stackrel{\simeq}{\to} S^n$.

7. Exercice

On munit la sphère S^n de la relation d'équivalence $x \equiv -x$. Montrer que l'on a un homéomorphisme $S^n/\equiv \stackrel{\simeq}{\to} P^n(\mathbb{R})$.

8. Exercice!!

Montrer que l'on a des pushouts de la forme

