Université des Sciences et Technologies de Lille Master Math, S2 (2007-08) Topologie algébrique, Feuille 6

§1. Homotopie des applications

1. Exercice

Prouver que des applications $f, g: X \to S^{n-1}$ d'un espace X dans la sphère

$$S^{n-1} = \{v \in \mathbb{R}^n \text{ tels que } ||v||^2 = 1\}$$

telles que $f(x) \neq -g(x), \forall x \in X$, sont homotopes.

2. Exercice

- **2.1)** Prouver que le cône CX d'un espace X, défini comme le quotient $CX = X \times [0,1]/X \times \{0\}$, est contractile.
- **2.2)** La suspension ΣX d'un espace X, définie comme le quotient $\Sigma X = X \times [0,1]/X \times \{0,1\}$, est-elle contractile en général?
- 2.3) L'ensemble

$$\sqcup = [0,1] \times \{0\} \cup \{0,1\} \times [0,1] \subset [0,1] \times [0,1]$$

est-il rétract par déformation de $[0,1] \times [0,1]$?

3. Exercice

Construire des équivalences d'homotopies inverses $\phi: F_2 \to S^1$ et $\psi: S^1 \to F_2$ entre les espaces

$$F_2 = \{ (z_1, z_2) \in \mathbb{C} \times \mathbb{C} \text{ tels que } z_1 \neq z_2 \}$$
 et $S^1 = \{ z \in \mathbb{C} \text{ tels que } |z| = 1 \}.$

(On explicitera les homotopies telles que $\psi \phi \sim \mathrm{Id}$ et $\phi \psi \sim \mathrm{Id}$.)

4. Exercice

Prouver que $SO(2,\mathbb{R})$, respectivement $SU(2,\mathbb{C})$, est rétract par déformation de $SL(2,\mathbb{R})$, respectivement $SL(2,\mathbb{C})$. On utilisera la décomposition

$$P = Q \cdot \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \cdot \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix},$$

obtenue dans un exercice précédent où $\lambda \in \mathbb{R}_+^*$, et $Q \in SO(2,\mathbb{R})$, respectivement $Q \in SU(2,\mathbb{C})$.

5. Problème!!!

On travaille dans la catégorie des espaces topologiques pointés, le point base d'un espace sera toujours noté *, toutes les applications sont supposées préserver le point base.

Pour $A \subset B$, on note B/A l'espace quotient obtenu en identifiant les points de A au point base a = *

Le cône d'un espace CA est défini par le quotient :

$$CA = A \times [0, 1]/A \times \{0\} \cup * \times [0, 1]$$
;

la suspension par :

$$\Sigma A = A \times [0,1]/A \times \{0\} \cup * \times [0,1] \cup A \times \{1\}.$$

On notera [a,t] le point du cône ou de la suspension de A représenté par le couple $(a,t) \in A \times [0,1]$. Le cône d'une application $f:A \to B$ est défini par le quotient :

$$Cf = CA \prod B/\simeq,$$

avec $x \simeq y$ si x = [a, 1] et y = f(a). On notera que le point base de B, les points $[a, 0] \in CA$ et les points $[*, t] \in CA$ sont identifiés dans Cf et représentent le point base de Cf. On a une application naturelle $i : B \to Cf$.

5.1) Pour des espaces (pointés) K, X, on notera [K,X] l'ensemble des classes d'homotopies relatives au point base d'applications $u:K\to X$. On notera $\phi_*:[K,X]\to [K,Y]$, respectivement $\psi^*:[L,X]\to [K,X]$, l'application induite par la composition des classes d'homotopie par une application $\phi:X\to Y$, respectivement $\psi:K\to L$.

Soit X un espace. Soit $\phi:K\to L$ une équivalence d'homotopie. Prouver que l'application induite sur les ensembles de classes d'homotopie

$$\phi^*: [L,X] \, \to \, [K,X]$$

est une bijection.

5.2) On considère la suite d'ensembles de classes d'homotopie :

$$[Cf,X] \xrightarrow{i^*} [B,X] \xrightarrow{f^*} [A,X].$$

Prouver que cette suite est exacte au sens suivant. On note $[v] \in [B, X]$ la classe d'homotopie d'une application $v : B \to X$. Si $f^*([v]) = [*]$, la classe de l'application constante, alors il existe une classe $[w] \in [Cf, X]$ telle que $i^*([w]) = [v]$.

- **5.3)** Construire des équivalences d'homotopie inverses $\phi: Ci \to \Sigma A$ et $\psi: \Sigma A \to Ci$. On explicitera les homotopies telles que $\phi\psi \sim \mathrm{Id}_{\Sigma A}$ et $\psi\phi \sim \mathrm{Id}_{Ci}$.
- **5.4)** On veut prolonger la suite exacte de la question 2. D'abord, en utilisant le résultat précédent, montrer qu'il existe une suite exacte d'ensembles

$$[\Sigma A, X] \xrightarrow{\partial^*} [Cf, X] \xrightarrow{i^*} [B, X]$$

pour une application naturelle $\partial: Cf \to \Sigma A$ que l'on explicitera.

5.5) On note $\Sigma f: \Sigma A \to \Sigma B$ l'application telle que $\Sigma f([a,t]) = [f(a),t]$. Compléter les résultats obtenus précédemment pour prouver que l'on a une suite exacte à 5 termes de la forme

$$[\Sigma B, X] \xrightarrow{\Sigma f^*} [\Sigma A, X] \xrightarrow{\partial^*} [Cf, X] \xrightarrow{i^*} [B, X] \xrightarrow{f^*} [A, X].$$

Indication : Pour boucler la suite exacte, on pourra adapter les arguments des questions 3 et 4 et relier $C\partial$ à ΣB de façon appropriée.

5.6) Montrer que l'ensemble $[\Sigma A, X]$ possède une structure de groupe, que ce groupe agit sur l'ensemble [Cf, X] et que des classes d'homotopie de [Cf, X] ont même image par $i^* : [Cf, X] \to [B, X]$ si et seulement si elles sont dans la même orbite sous l'action de $[\Sigma A, X]$.