
SECTION 11: KILLING HOMOTOPY GROUPS: POSTNIKOV AND

WHITEHEAD TOWERS

In the previous section we used the technique of adjoining cells in order to construct CW approx-
imations for arbitrary spaces. Here we will see that the same technique allows us to modify spaces
by killing all homotopy groups above a certain dimension. This will be used to ‘approximate’ a
connected space by a tower of spaces which have only non-trivial homotopy groups below or above
a fixed dimension where they are isomorphic to the ones of the given space. The first case gives
rise to the Postnikov tower and the second one to the Whitehead tower. Moreover, the homotopy
groups of two subsequent levels in these towers only differ in one dimension. In fact, the maps
belonging to the towers are fibrations and the fibers have precisely one non-trivial homotopy group.

We know that if α : ∂en+1 → X represents an element [α] ∈ πn(X,x0), then [α] = 0 if and
only if α extends to a map en+1 → X. Thus if we enlarge X to a space X ′ = X ∪α en+1

by adjoining an (n + 1)-cell with α as attaching map, then the inclusion i : X → X ′ induces a
map i∗ : πn(X,x0) → πn(X ′, x0) with i∗[α] = 0. We say that [α] ‘has been killed’. (Naively, we
think of X ′ as a smallest extension of X that does that. Some justification for this thinking will be
provided in the exercises.) The following lemma expresses what happens to the homotopy groups
in lower dimensions. The proof is similar to the one that the inclusion of the n-skeleton of a CW
complex is an n-equivalence and will hence not be given.

Lemma 1. Let (X,x0) be a pointed space, and let X ′ = X∪α en+1 be obtained from X by adjoining
an (n+ 1)-cell. Then the inclusion i : X → X ′ induces a map πk(X,x0)→ πk(X ′, x0) which is an
isomorphism for k < n and surjective for k = n.

It is difficult to control what happens to the higher homotopy groups. For example, since π3(S2)
is non-trivial, adding a 2-cell to an element in π1 may well add elements in π3. However, we can
‘kill’ all of πn without changing πk for k < n, by iterating the procedure of Lemma 1.

Lemma 2. Let (X,x0) be a pointed space. Then there exists a relative CW complex i : X → Y ,
constructed by adjoining (n+1)-cells only, such that i∗ : πk(X,x0)→ πk(Y, y0) is bijective for k < n
and such that πn(Y, y0) = 0.

Proof. Let A be a set of representatives α of generators [α] of the group πn(X,x0). Let Y be
obtained from X by attaching an (n+ 1)-cell en+1

α along α : ∂en+1
α → X for each α ∈ A:

A× ∂en+1 //

��

X

i

��

A× en+1 // Y.

Then by an iterated application of Lemma 1, the map i : X → Y induces isomorphisms in πk for
k < n, and induces the zero-map on πn. Since this map is also surjective, we conclude that πn(Y )
has to vanish. �

For the proof of the next theorem, recall that any map f : U → V can be factored as f = p ◦ φ,

f : U
φ→ P (f)

p→ V,
1
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where p is a Serre fibration and φ is a homotopy equivalence (‘mapping fibration’, see Section 5).
We say that (up to homotopy), any map ‘can be turned into a fibration’.

Theorem 3. (Postnikov tower) For any connected space X, there is a ‘tower’ of fibrations

P1(X) P2(X)
ψ1oo P3(X)

ψ2oo . . .oo

and compatible maps fi : X → Pi(X) (compatible in the sense that ψn ◦ fn+1 = fn : X → Pn(X)),
with the following properties:

(1) πk(Pn(X)) = 0 for k > n
(2) πk(X)→ πk(Pn(X)) is an isomorphism for k ≤ n (and hence so is πkPn(X)→ πkPn−1(X)

for k < n)
(3) The fiber Fn of ψn−1 has the property that πn(Fn) ∼= πn(X) and πk(Fn) = 0 for all k 6= n.

Remark 4. A space like this fiber Fn with only one non-trivial homotopy group is called an
Eilenberg-MacLane space. If Z is such a space with πk(Z) = 0 for all k 6= n and πn(Z) ∼= A,
one says that Z is a K(A,n)-space (strictly speaking one always means the space Z together with
a chosen isomorphism πn(Z) ∼= A). We will discuss these spaces in more detail in a later lecture.

With this terminology the situation of the theorem can be depicted as follows

...

��

P3(X)

ψ2

����

F3 = K(π3(X), 3)oo

P2(X)

ψ1

����

F2 = K(π2(X), 2)oo

X
f1

//

f2

44f3

99

P1(X)

where we used // // to denote a fibration.

Proof. (of Theorem 3) Let in : X → Yn be a space obtained from X by killing πk(X) for all k > n,
i.e., such that

(1) (in)∗ : πk(X)→ πk(Yn) is an isomorphism for all k ≤ n.
(2) πk(Yn) = 0 for all k > n.

Such a space Yn can be obtained by repeated application of the procedure of Lemma 2,

X ⊆ Y (n+1)
n ⊆ Y (n+2)

n ⊆ . . .

where Y
(n+1)
n kills πn+1(X) by adjoining (n + 2)-cells, Y

(n+2)
n kills πn+2(Y

(n+1)
n ) by adjoining

(n+ 3)-cells to Y
(n+1)
n , and so on. The resulting space Yn =

⋃
m>n Y

(m)
n , the union endowed with

the weak topology, has the desired property, as is immediate from the fact that any map K → Yn
with K compact (e.g., K = Sk or K = Sk× [0, 1]) must factor through some Y

(m)
n . If you see what
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this construction does, then it is clear that there is a canonical inclusion φn : Yn+1 → Yn making
the following diagram commute (we need to adjoin ‘more cells’ for Yn than for Yn+1):

Yn+1

φn

��

X
in

//

in+1

33

Yn

Thus, X is ‘approximated’ by smaller and smaller relative CW complexes

X ⊆ . . . ⊆ Yn+1 ⊆ Yn ⊆ . . . ⊆ Y2 ⊆ Y1.
Now let P1(X) = Y1, and let f1 : X → P1(X) be i1 : X → P1(X). Let P2(X) be the space fitting
into a factorization of

Y2
φ1 // Y1

id // P1(X)

into a homotopy equivalence j2 followed by a fibration ψ1. Next factor j2φ2 in a similar way as ψ2j3,
and so on, all fitting into a diagram

...

��

...

��

...

��

X

=

��

i3 // Y3
j3

'
//

φ2

��

P3(X)

ψ2

����

X

=

��

i2 // Y2
j2

'
//

φ1

��

P2(X)

ψ1

����

X
i1

// Y1 =
// P1(X).

Write fn : X → Pn(X) for the composition jnin, and denote the fiber of ψn−1 : Pn(X)→ Pn−1(X)
by Fn ⊆ Pn(X).

Now let us look at the homotopy groups. By construction we have (1) and (2) above, and hence
the same is true for Pn(X) instead of Yn:

(1) (fn)∗ : πk(X)→ πk(Pn(X)) is an isomorphism for all k ≤ n.
(2) πk(Pn(X)) = 0 for all k > n.

We can feed this information in the long exact sequence of the fibration Fn ⊆ Pn(X)
ψn−1→ Pn−1(X),

a part of which looks like

. . .→ πk+1(Pn)→ πk+1(Pn−1)→ πk(Fn)→ πk(Pn)→ πk(Pn−1)→ . . .

where for simplicity we write Pn for Pn(X), and omit all base points from the notation. So, we
clearly have:

(1) For k > n, the group πk(Fn) lies between two zero groups, hence is itself the zero-group.
(2) For k < n, the group πk(Fn) lies between a surjection and an isomorphism,

• // // • // πk(Fn) // •
∼= // • ,

hence is zero again.
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(3) For k = n, the relevant part of the sequence looks like

0→ 0→ πn(Fn)→ πn(Pn)→ 0

whence πn(Fn) is isomorphic to πn(Pn) ∼= πn(X).

This tells us that Fn is a K(πn(X), n)-space and hence proves the theorem. �

Remark 5. Much more can be said about these Postnikov towers: under some conditions, the
fibration Pn → Pn−1 is even a fiber bundle.

The Postnikov tower builds up the homotopy groups of X (together with all relations between
them, such as the action of π1 on πn) ‘from below’, by constructing for each n a space with homotopy
groups π1, . . . , πn only. There is also a construction ‘from above’, called the Whitehead tower
of X, as described in the following theorem.

Theorem 6. (Whitehead tower) Let X be a connected space. There exists a tower

X W1(X)oo W2(X)oo W3(X)oo . . .oo

with the following properties:

(1) πk(Wn(X)) = 0 for k ≤ n
(2) The map πk(Wn(X))→ πk(X) is an isomorphism for all k > n.
(3) The map Wn(X)→Wn−1(X) is a fibration whose fiber is a K(πn(X), n− 1)-space.

Proof. As in the proof of the Postnikov tower, X can be approximated by extensions

X ⊆ . . . ⊆ Yn+1 ⊆ Yn ⊆ . . . ⊆ Y2 ⊆ Y1.
where πk(Yn) = 0 for k > n and πk(X) → πk(Yn) is an isomorphism for k ≤ n. For X ⊆ Y , let
W̄n(X) be the space of paths in Yn from the base point to X, as in the pullback

W̄n(X) //

��

Y
[0,1]
n

��

X ∼= 1×X
x0×in

// Yn × Yn

So W̄n(X) → X is a fibration. (Remember we used this fibration to describe relative homotopy
groups of the pair (Yn, X) in the exercises to Section 4.) These spaces fit naturally into a sequence

X W̄1(X)oo W̄2(X)
⊇

oo W̄3(X)
⊇

oo . . .⊇
oo

Now turn these inclusions into fibrations (by factoring into a homotopy equivalence followed by a
fibration as before) to obtain a diagram

X

=

��

W̄1(X)

=

��

oo W̄2(X)

'
��

⊇
oo W̄3(X)

'
��

⊇
oo . . .⊇

oo

X W1(X)oooo W2(X)oooo W3(X)oooo . . .oooo

where the lower horizontal maps are all fibrations and the vertical ones are homotopy equivalences.
Now let us look at the homotopy groups: We know πk(W̄nX) ∼= πk(WnX), and there are two

fibrations to play with, viz W̄n(X)→ X and Wn(X)→Wn−1(X). The fiber of the first one is the
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loop space ΩYn of Yn, and the fiber of the second one will be denoted Gn. Then the long exact
sequence of W̄n(X)→ X looks like

. . . // πk(ΩYn) // πk(W̄nX) // πk(X) // πk−1(ΩYn) // . . .

or equivalently

. . . // πk+1(Yn) // πk(W̄nX) // πk(X) // πk(Yn) // . . .

But πk(Yn) = 0 for k > n and πk(X)→ πk(Yn) is an isomorphism for k ≤ n, so

πk(W̄n(X)) ∼= πk(X), k > n, and πk(W̄n) = 0, k ≤ n,
and hence the same is true for Wn instead of W̄n. Next, the long exact sequence associated
to Wn(X)→Wn−1(X) looks like

. . . // πk+1(Wn) // πk+1(Wn−1) // πk(Gn) // πk(Wn) // πk(Wn−1) // . . .

(where we write Wn for Wn(X), etc), and we notice:

(1) if k > n then πk(Gn) is squeezed in between two isomorphisms, so πk(Gn) = 0.
(2) if k ≤ n− 2 then πk(Gn) sits between two zero groups hence is zero itself.

(3) for k = n we obtain πn+1(Wn) // πn+1(Wn−1) // πn(Gn) // 0 and the first map

is an isomorphism so that πn(Gn) = 0.
(4) in the remaining case k = n − 1 the sequence looks like 0 → πn(Wn−1) → πn−1(Gn) → 0,

so that we have an isomorphism πn(X) ∼= πn(Wn−1) ∼= πn−1(Gn).

Thus, this tells us that Gn is a K(πn(X), n− 1)-space. �

Note that the spaces W̄n(X) used in the proof of the Whitehead tower are precisely the homotopy
fibers of the maps in : X → Yn constructed in the proof of the Postnikov tower. The remaining
work in the proof of Theorem 6 then consists of turning a certain sequence of maps between the
homotopy fibers in a sequence of fibrations and analyzing what happens at the level of homotopy
groups. This observation is sometimes referred to by saying that the Whitehead tower is obtained
from the Postnikov tower ‘by passing to homotopy fibers’.


