
SECTION 5: FIBRATIONS AND HOMOTOPY FIBERS

In this section we will introduce two important classes of maps of spaces, namely the Hurewicz
fibrations and the more general Serre fibrations, which are both obtained by imposing certain
homotopy lifting properties. We will see that up to homotopy equivalence every map is a Hurewicz
fibration. Moreover, associated to a Serre fibration we obtain a long exact sequence in homotopy
which relates the homotopy groups of the fibre, the total space, and the base space. This sequence
specializes to the long exact sequence of a pair which we already discussed in the previous lecture.

Definition 1. (1) A map p : E → X of spaces is said to have the right lifting property
(RLP) with respect to a map i : A → B if for any two maps f : A → E and g : B → X
with pf = gi, there exists a map h : B → E with ph = g and hi = f :

A
f

//

i

��

E

p

��

B g
//

h

>>~
~

~
~

X

(So h at the same time ‘extends’ f and ‘lifts’ g.)
(2) A map p : E → B of spaces is a Serre fibration if it has the RLP with respect to all

inclusions of the form

In × {0} → In × I = In+1, n ≥ 0,

and a Hurewicz fibration if it has the RLP with respect to all maps of the form

A× {0} → A× I
for any space A. (So evidently, every Hurewicz fibration is a Serre fibration.)

(3) If p : E → X is a map of spaces (but typically one of the two kinds of fibrations) and x ∈ X,
then p−1(x) ⊆ E is called the fiber of p over x. If x = x0 is a base point specified earlier,
we just say the fiber of p for the fiber over x0.

Thus, Hurewicz fibrations are those maps p : E → X which have the homotopy lifting prop-
erty with respect to all spaces: given a homotopy H : A × I → X of maps with target X and a
lift G0 : A→ E of H0 = H(−, 0) : A→ X against the fibration p : E → X then this partial lift can
be extended to a lift of the entire homotopy G : A× I → E, i.e., G satisfies pG = H and Gi = G0:

A× {0} G0 //

i

��

E

p

��

A× I
H

//

G

;;w
w

w
w

w
X

By definition, the class of Serre fibrations is given by those maps which have the homotopy lifting
property with respect to all cubes In.

Example 2. (1) Any projection X × F → X is a Hurewicz fibration, as you can easily check.
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(2) The evaluation map

ε = (ε0, ε1) : XI → X ×X

at both end points is a Hurewicz fibration. Indeed, suppose we are given a commutative
square

A× {0}
f

//

i

��

XI

ε

��

A× I g
//

h

99s
s

s
s

s
X ×X

Or equivalently, we are given a map

φ : (A× {0} × I) ∪ (A× I × {0, 1})→ X

which we wish to extend to A× I × I. But ({0} × I) ∪ (I × {0, 1}) = J1 ⊆ I2 is a retract
of I2, and hence so is A × J1 ⊆ A × I2. Therefore we can simply precompose φ with the
retraction r : A× I2 → A× J1 to find the required extension.

(3) Let p : E → X and f : X ′ → X be arbitrary maps. Form the fibered product or pullback

E ×X X ′ = {(e, x′) | p(e) = f(x′)}

topologized as a subspace of the product E ×X ′. Then if E → X is a Hurewicz (or Serre)
fibration, so is the induced projection E×XX ′ → X ′. This follows easily from the universal
property of the pullback (see Exercise 1).

(4) If E → D → X are two Hurewicz (or Serre) fibrations, then so is their composition E → X
(see Exercise 2).

(5) Let (X,x0) be a pointed space. The path space P (X) (or more precisely, P (X,x0) if
necessary) is the subspace of XI (always with the compact-open topology) given by paths α
with α(0) = x0. The map ε1 : P (X)→ X given by evaluation at 1 is a Hurewicz fibration.
This follows by combining the previous examples (2) and (3).

(6) If f : Y → X is any map, the mapping fibration of f is the map

p : P (f)→ X

constructed as follows. The space P (f) is the fibered product

P (f) = XI ×X Y = {(α, y) | α(1) = f(y)}

and the map p is given by p(α, y) = α(0). We claim that p is a Hurewicz fibration. Indeed,
suppose we are given a commutative diagram

A× {0}

i

��

u // P (f)

p

��

A× I v
// X
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Denoting by π1 : P (f)→ XI and π2 : P (f)→ Y the two projection maps belonging to the
pullback P (f), we can first extend π2 ◦ u as in:

A× {0} π2◦u //

i

��

Y

A× I
ũ

;;w
w

w
w

w

and then use example (2) to find a diagonal as in

A× {0} π1◦u //

��

XI

ε=(ε0,ε1)

��

A× I
w

99s
s

s
s

s

(v,f◦ũ)
// X ×X

Then (w, ũ) : A × I → P (f) is a diagonal filling in the original diagram we are looking
for. In fact, it lands in P (f) because ε1w = fũ, and makes the diagram commute because
pw = ε0w = v and (w, ũ)i = (π1u, π2u) = u.

Here is a more abstract way of proving this: we showed in example (2) that ε : XI → X×
X is a Hurewicz fibration. Hence, by Exercise 1, so is the pullback Q = (X×Y )×(X×X)X

I

in:

Q //

��

XI

ε

��

X × Y
id×f

// X ×X

But then, by example (1) and Exercise 2, the composition Q→ X × Y → X is a Hurewicz
fibration as well. Now note that

Q→ P (f) : (α, x, y) 7→ (α, y)

defines a homeomorphism and that under this homeomorphism the two maps Q→ X and
P (f)→ X are identified. Thus also the map P (f)→ X is a Hurewicz fibration.

Exercise 3. Prove that the map φ in

Y

f
!!DDDDDDDD

φ
// P (f)

p

��

X

given by φ(y) = (κf(y), y) is a homotopy equivalence which makes the diagram commute. Here, as
usual, we denote by κf(y) the constant path at f(y).

This exercise thus shows that every map is ‘homotopy equivalent’ to a Hurewicz fibration. Motivated
by this, one calls the fiber of p over x,

p−1(x) = {(α, y) | α(1) = f(y), α(0) = x}
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the homotopy fiber of f over x. Note that there is a canonical map from the fiber of f over x to
the homotopy fiber of f over x given by a restriction of φ, namely:

f−1(x)→ p−1(x) : y 7→ (κx, y)

Thus, the fiber ‘sits in’ the homotopy fiber while the homotopy fiber can be thought of as a ‘relaxed’
version of the fiber: the condition imposed on a point y ∈ Y to lie in the fiber over x is that it has
to be mapped to x by f , i.e., f(y) = x, while a point of the homotopy fiber is a pair (α, y) consisting
of y ∈ Y together with a path α in X ‘witnessing’ that y ‘lies in the fiber up to homotopy’.

So far, all our examples are examples of Hurewicz fibrations. However, we will see in the next
lecture that the weaker property of being a Serre fibration is a local property, and hence that all
fiber bundles are examples of Serre fibrations. Moreover, this weaker notion suffices to establish
the following theorem.

Theorem 4. (The long exact sequence of a Serre fibration)
Let p : (E, e0)→ (X,x0) be a map of pointed spaces with i : (F, e0)→ (E, e0) being the fiber. Suppose
that p is a Serre fibration. Then there is a long exact sequence of the form:

. . .→ πn+1(X,x0)
δ→ πn(F, e0)

i∗→ πn(E, e0)
p∗→ πn(X,x0)

δ→ . . .
i∗→ π0(E, e0)

p∗→ π0(X,x0)

The ‘connecting homomorphism’ δ will be constructed explicitly in the proof. Before turning to
the proof, let us deduce an immediate corollary. By considering the homotopy fiber Hf instead of
the actual fiber, we see that we can obtain a long exact sequence for an arbitrary map f of pointed
spaces.

Corollary 5. Let f : (Y, y0)→ (X,x0) be a map of pointed spaces and let Hf be its homotopy fiber.
Then there is a long exact sequence of the form:

. . .→ πn+1(X,x0)→ πn(Hf , ∗)→ πn(Y, y0)
f∗→ πn(X,x0)→ . . .→ π0(Y, y0)

f∗→ π0(X,x0)

Proof. Apply Theorem 4 to the mapping fibration (Example 2.(6)) and use Exercise 3. �

Before entering in the proof of the theorem, we recall from the previous lecture the definition of
the subspace Jn ⊆ In+1,

Jn = (In × {0}) ∪ (∂In × I) ⊆ ∂In+1 ⊆ In+1.

Note that, by ‘flattening’ the sides of the cube, one can construct a homeomorphism of pairs

(In+1, Jn)
∼=→ (In+1, In × {0}).

Thus, any Serre fibration also has the RLP with respect to the inclusion Jn ⊆ In+1. We will use
this repeatedly in the proof.

Proof. (of Theorem 4) The main part of the proof consists in the construction of the operation δ.
Let α : (In, ∂In)→ (X,x0) represent an element of πn(X,x0) = πn(X). Let ē0 : Jn−1 → E be the
constant map with value e0. Then the square

Jn−1
ē0 //

��

E

p

��

In α
//

β

<<y
y

y
y

X
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commutes, so by the definition of a Serre fibration we find a diagonal β. Then δ[α] is the element
of πn−1(F ) represented by the map

β(−, 1) : In−1 → F, t 7→ β(t, 1).

Note that this indeed represents an element of πn−1(F ), because the boundary of In−1 × {1} is
contained in Jn−1, and β maps the top face In−1 × {1} into F since p ◦ β = α maps it to x0.

The first thing to check is that δ is well defined on homotopy classes. Suppose [α0] = [α1],
as witnessed by a homotopy h : In × I → X from α0 to α1. Suppose also that we have chosen
liftings β0 and β1 of α0 and α1 as above. Then we can define a map k making the solid square

J̃n

��

k // E

p

��

In × I
h

//

l

<<x
x

x
x

x
X

commute. Here J̃n is the union of all the faces of In+1 except {tn = 1}. (It is like Jn except that
we have interchanged the roles of tn and tn+1.) On In × {0} and In × {1} the map k is defined
to be β0 and β1 respectively. On the faces {ti = 0}, {ti = 1} (i < n) and {tn = 0} the map k has
constant value e0. Now a diagonal l restricted to In−1 × {1} × I gives a homotopy from β0(−, 1)
to β1(−, 1), and lies entirely in the fiver over x0 because h is a homotopy relative to ∂In. This
proves that β0(−, 1) and β1(−, 1) define the same element of πn−1(F ). It also proves that δ[α] thus
defined does not depend on the choice of the filling β (Why?).

With these details about δ being well-defined out of the way, it is quite easy to prove that the
sequence of the theorem is an exact sequence of pointed sets. (We write ‘pointed sets’ here because
we haven’t proved yet that δ is a homomorphism of groups for n > 1. We leave this to you as
Exercise 7.)

Exactness at πn(E). Clearly p∗ ◦ i∗ = 0 because p ◦ i is constant, so im(i∗) ⊆ ker(p∗). For the
reverse inclusion, suppose α : In → E represents an element of πn(E) with p∗[α] = [p ◦ α] = 0. Let
h : In × I → X be a homotopy rel ∂In from pα to the constant map on x0. Choose a lift l in

Jn
k //

��

E

p

��

In × I
h

//

l

;;x
x

x
x

x
X

where k|In×{0}= α and k is constant e0 on the other faces. Then γ = l |In×{1} maps entirely into F ,
so represents an element [γ] ∈ πn(F ) with i∗[γ] = [iγ] = [α] (by the homotopy l).

Exactness at πn(X). If β : In → E represents an element of πn(E) then for α = p ◦ β we can
take the same β as the diagonal filling in the construction of δ[α]. So δp∗[β] = β |In−1×{1} which is
constant e0. Thus δ ◦ p∗ = 0, or im(p∗) ⊆ ker(δ). For the converse inclusion, suppose α : In → X
represents an element of πn(X) with δ[α] = 0. Then for a lift β as in

Jn−1
ē0 //

��

E

p

��

In α
//

β

<<y
y

y
y

X
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we have that β(−, 1) is homotopic to the constant map by a homotopy h relative to ∂In−1 which
maps into the fiber F . But then, stacking this homotopy h on top of β (i.e., by forming h ◦n β),
we obtain a map representing an element β′ of πn(E). The image p ◦ β′ is obviously homotopic to
p ◦ β = α because p ◦ h is constant, showing that [α] lies in the image of p∗.

Exactness at πn−1(F ). For α : In → X representing an element of πn(X), the map β in the
construction of δ[α] = [β(−, 1)] shows that β(−, 1) ' β(−, 0) = ē0 in E, so i∗δ[α] = 0. For
the other inclusion, suppose γ : In−1 → F represents an element of πn−1(F ) with i∗[γ] = 0, as
represented by a homotopy h : In−1 × I → E with h(−, 1) = γ and h(−, 0) = ē0. Then α = p ◦ h
represents an element of πn(X), and in the construction of δ[α] we can choose the diagonal filling β
to be identical to h, in which case δ[α] is represented by γ. This shows that ker(i∗) ⊆ im(δ), and
completes the proof of the theorem. �

Exercise 6. Show that the long exact sequence of a pointed pair (X,A), constructed in the previous
lecture, can be obtained from this long exact sequence, by considering the mapping fibration of the
inclusion A→ X (see also the last exercise sheet).

Exercise 7. Prove that the connecting homomorphism δ : πn(X,x0)→ πn−1(F, e0) is a homomor-
phism of groups for n ≥ 2.

Exercise 8. Let p : E → X be a Hurewicz fibration, and let α : I → X be a path from x to y. Use
the lifting property of E → X with respect to p−1(x)× {0} → p−1(x)× I to show that α induces
a map α∗ : p−1(x) → p−1(y). Show that the homotopy class of α∗ only depends on the homotopy
class of α, and that this construction in fact defines a functor on the fundamental groupoid,

π(X)→ Ho(Top).

This last exercise shows in particular that the homotopy type of the fiber of a Hurewicz fibration
is constant on path components. More precisely, if p : E → X is a Hurewicz fibration, then any
path α : I → X induces a homotopy equivalence between the fiber over α(0) and the fiber over α(1).


