Fibrations

Omar Ortiz Department of Mathematics and Statistics University of Melbourne Parkville, VIC 3010 Australia ortizo@pgrad.unimelb.edu.au

June 24, 2010

1 Pullbacks

The **pullback** of two morphisms $f : X \longrightarrow Z$ and $g : Y \longrightarrow Z$ consists of an object $X \times_A Y$ and two morphisms $X \times_A Y \longrightarrow X$ and $X \times_A Y \longrightarrow Y$, satisfying the following universal property

For small categories we can explicitly write

$$X \times_A Y = \{(x, y) \in X \times Y : f(x) = g(y)\}.$$

2 Fibrations

A map $p: E \longrightarrow B$ is a (**Hurewicz**) fibration if it satisfies the homotopy lifting property (*HLP*) with respect to all spaces. This means that if Y is a space and $h \circ i_0 = p \circ f$ in the diagram

$$\begin{array}{c|c} Y & \xrightarrow{f} E \\ i_0 & \swarrow & \swarrow \\ i_V \times I & \xrightarrow{h} B \end{array}$$

then there exists \tilde{h} that makes the diagram commute.

Here
$$I = [0, 1]$$
 and $i_0 : y \mapsto (y, 0)$.

E is the **total space**, *B* is the **base space** and $F_b = p^{-1}(b)$ for $b \in B$ is the **fiber over** *b* of the fibration *p*.

All fibers in a path component of B are homotopy equivalent. Thus, when B is path connected, all fibers are homotopy equivalent and we regard them as *the* fiber (unique up to homotopy) of the fibration p, denoted simply as F.

3 Replacing a map by a fibration

An arbitrary map $f: X \longrightarrow Y$ can be decomposed into a homotopy equivalence followed by a fibration:

$$X \xrightarrow{\nu} N_f \xrightarrow{\rho} Y$$
$$x \longmapsto (x, C_{f(x)})$$
$$(x, \beta) \longmapsto \beta(0),$$

 ν is an homotopy equivalence, ρ a fibration, and $f = \rho \circ \nu$. Where

$$N_f = X \times_f Y^I = \{(x, \beta) \in X \times Y^I : f(x) = \beta(1)\}, \text{ the pullback of } Y^I \xrightarrow{p_1} Y \xleftarrow{f} X,$$

is the mapping path space of f, with

$$Y^{I} = Hom(I, Y) \text{ and } p_{1} : \beta \longmapsto \beta(1),$$

and

$$C_{f(x)}: t \longmapsto f(x)$$
 (the constant map).

4 Homotopy Fiber

The **homotopy fiber** F_f of a map $f: X \longrightarrow Y$, is the fiber of the associated fibration $\rho: N_f \longrightarrow Y$.

Fix a basepoint $* \in Y$, take 0 to be the basepoint of I and let PY be the subset of Y^I consisting in based maps. Then

$$F_{f} = \rho^{-1}(*)$$

$$= \{(x,\beta) \in N_{f} : \beta \in PY\}$$

$$= \{(x,\beta) \in X \times Y^{I} : f(x) = \beta(1) \land \beta(0) = *\}$$

$$= X \times_{f} PY, \text{ the pullback of } PY \xrightarrow{p_{1}} Y \xleftarrow{f} X.$$

In this case, the universal property of the pullback is equivalent to a bijective correspondence between lifts and null-homotopies, i.e.

Proposition 4.1 Given spaces X, Y, Z and maps $f : X \longrightarrow Y, g : Z \longrightarrow X$, there is a (lifted) map $\tilde{g} : Z \longrightarrow F_f$ such that $\pi_1 \circ \tilde{g} = g$, where $\pi_1 : F_f \longrightarrow X$ is the canonical projection, iff $f \circ g \simeq C_*$ (null-homotopic).

Proof

 (\Rightarrow) Let $h = \pi_2 \circ \tilde{g} : Z \longrightarrow PY$. If we consider h as a map of $Z \times I$ into Y, then it must satisfy $h(z,0) = C_*(z) = *$ and $h(z,1) = (f \circ g)(z)$, because of the commutativity of the diagram and the definitions of the spaces involved. Thus, $h : f \circ g \simeq C_*$.

 (\Leftarrow) Let $h: f \circ g \simeq C_*$. Then $\tilde{g} = g \times h$ is the desired lift.

5 Fibration sequences

The **fibration sequence** of a fibration $p: E \longrightarrow B$ with fiber F, is the sequence

$$F \hookrightarrow E \xrightarrow{p} B.$$

EXAMPLES

• For a map $f: X \longrightarrow Y$, we associate the fibration sequence $F_f \hookrightarrow N_f \xrightarrow{\rho} Y$.

• For a group G with a subgroup $H \preceq G$, the sequence $G/H \hookrightarrow BH \xrightarrow{\rho} BG$ is a fibration sequence, where BH and BG are the classifying spaces of H and G respectively.

6 References

[May] J. P. May. A Concise Course in Algebraic Topology. Chapters 7 and 8. The University of Chicago Press. Chicago, 1999.

[Ben] D. J. Benson. *Representations and cohomology II: Cohomology of groups and modules.* Section 1.6. Cambridge studies in advanced mathematics 31, Cambridge University Press. Cambridge, 1991.

[Beh] M. Behrens. Lecture 6: Pushouts and Pullbacks, the Homotopy Fiber. Lecture notes of the course: Algebraic Topology II. MIT. 2006.