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112 6. Fibrations, Cofibrations and Homotopy Groups

of the constructions we will give are set-theoretically simple, the issue of how
to appropriately topologize these sets can become a nuisance. The category
of compactly generated spaces is a framework which permits one to make
such constructions without worrying about these technical issues. The ref-
erence for the material in this section is Steenrod’s paper “A convenient
category of topological spaces” [38].

Definition 6.1. A topological space X is said to be compactly generated if
X is Hausdorff and if a subset A ⊂ X is closed if and only if A∩C is closed
for every compact C ⊂ X.

Examples of compactly generated spaces include:

1. locally compact Hausdorff spaces (e.g. manifolds),
2. metric spaces, and
3. CW-complexes with finitely many cells in each dimension.

We will use the notation K for the category of compactly generated
spaces. (This is taken as a full subcategory of the category of all topological
spaces, i.e. every continuous function between compactly generated spaces
is a morphism in K.)

Any Hausdorff space can be turned into a compactly generated space by
the following trick.

Definition 6.2. If X is Hausdorff, let k(X) be the set X with the new
topology defined by declaring a subset A ⊂ X to be closed in k(X) if and
only if A ∩ C is closed in X for all C ⊂ X compact.

Exercise 84. Show that k(X) is compactly generated.

Thus k(X) is the underlying set of X topologized with more (closed and
hence more) open sets than X. This construction defines a functor

k : T2 → K
from the category T2 of Hausdorff spaces to the category K of compactly
generated spaces.

Exercise 85. Show that k is a right adjoint for the inclusion functor i :
K → T2. You will end up having to verify several of the facts below.

6.1.1. Basic facts about compactly generated spaces.

1. If X ∈ K, then k(X) = X.
2. If f : X → Y is a function, then k(f) : k(X)→ k(Y ) is continuous if

and only if f |C : C → Y is continuous for each compact C ⊂ X.
3. Let C(X, Y ) denote the set of continuous functions from X to Y .

Then k∗ : C(X, k(Y ))→ C(X, Y ) is a bijection if X is in K.
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4. The singular chain complexes of a Hausdorff space Y and the space
k(Y ) are the same.

5. The homotopy groups (see Definition 6.43) of Y and k(Y ) are the
same.

6. Suppose that X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · · is an expanding sequence of
compactly generated spaces so that Xn is closed in Xn+1. Topologize
the union X = ∪nXn by defining a subset C ⊂ X to be closed if
C ∩Xn is closed for each n. Then if X is Hausdorff, it is compactly
generated. In this case every compact subset of X is contained in
some Xn.

6.1.2. Products in K. Unfortunately, the product of compactly generated
spaces need not be compactly generated. However, this causes little concern,
as we now see.

Definition 6.3. Let X, Y be compactly generated spaces. The categorical
product of X and Y is the space k(X × Y ).

The following useful facts hold about the categorical product.

1. k(X × Y ) is in fact a product in the category K.
2. If X is locally compact and Y is compactly generated, then X ×Y =

k(X × Y ). In particular, I × Y = k(I × Y ). Thus the notion of
homotopy is unchanged.

From now on, if X and Y are compactly generated, we will denote
k(X × Y ) by X × Y .

6.1.3. Function spaces. The standard way to topologize the set of func-
tions C(X, Y ) is to use the compact-open topology.

Definition 6.4. If X and Y are compactly generated spaces, let C(X, Y )
denote the set of continuous functions from X to Y , topologized with the
compact-open topology. This topology has as a subbasis sets of the form

U(K, W ) = {f ∈ C(X, Y )|f(K) ⊂W}
where K is a compact set in X and W an open set in Y .

If Y is a metric space, this is the notion, familiar from complex analysis,
of uniform convergence on compact sets. Unfortunately, even for compactly
generated spaces X and Y , C(X, Y ) need not be compactly generated. We
know how to handle this problem: define

Map(X, Y ) = k(C(X, Y )).

As a set, Map(X, Y ) is the set of continuous maps from X to Y , but its
topology is slightly different from the compact open topology.
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Theorem 6.5 (adjoint theorem). For X, Y , and Z compactly generated,
f(x, y) �→ f̃(x)(y) gives a homeomorphism

Map((X × Y ), Z)→ Map(X, Map(Y, Z))

Thus −× Y and Map(Y,−) are adjoint functors from K to K.

The following useful properties of Map(X, Y ) hold.

1. Let e : Map(X, Y )×X → Y be the evaluation e(f, x) = f(x). Then
if X, Y ∈ K, e is continuous.

2. If X, Y, Z ∈ K, then:
(a) Map(X, Y × Z) is homeomorphic to Map(X, Y )×Map(X, Z),
(b) Composition defines a continuous map

Map(X, Y )×Map(Y, Z)→ Map(X, Z).

We will also use the notation Map(X, A;Y, B) to denote the subspace of
Map(X, Y ) consisting of those functions f : X → Y which satisfy f(A) ⊂ B.
A variant of this notation is Map(X, x0;Y, y0) denoting the subspace of
basepoint preserving functions.

6.1.4. Quotient maps. We discuss yet another convenient property of
compactly generated spaces. For topological spaces, one can give an example
of quotient maps p : W → Y and q : X → Z so that p× q : W ×X → Y ×Z
is not a quotient map. However, one can show the following.

Theorem 6.6.

1. If p : W → Y and q : X → Z are quotient maps, and X and Z are
locally compact Hausdorff, then p× q is a quotient map.

2. If p : W → Y and q : X → Z are quotient maps and all space are
compactly generated, then p × q is a quotient map, provided we use
the categorical product.

From now on, we assume all spaces are compactly generated. If we ever
meet a space which is not compactly generated, we immediately apply k.
Thus, for example, if X and Y are Hausdorff spaces, then by our conven-
tion X × Y really means k(k(X) × k(Y )). By this convention, we lose no
information concerning homology and homotopy, but we gain the adjoint
theorem.

6.2. Fibrations

There are two kinds of maps of fundamental importance in algebraic topol-
ogy; fibrations and cofibrations. Geometrically, fibrations are more com-
plicated than cofibrations. However, your garden variety fibration tends to
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be a fiber bundle, and fiber bundles over paracompact spaces are always
fibrations, so that we have seen many examples so far.

Definition 6.7. A continuous map p : E → B is a fibration if it has the
homotopy lifting property (HLP); i.e. the problem

Y × {0} E

Y × I B

✲g̃

❄ ❄

p

✲
G

�

�

�

�

�

�

�

�

�

�

�

�

✒
G̃

has a solution for every space Y .

In other words, given the continuous maps p, G, g̃, and the inclusion
Y × {0} → Y × I, the problem is to find a continuous map G̃ making the
diagram commute.
Remark. Recall that whenever a commutative diagram is given with one
dotted arrow, we consider it as a problem whose solution is a map which
can be substituted for the dashed arrow to give a commutative diagram.

A covering map is a fibration. In studying covering space theory this
fact is called the covering homotopy theorem. For covering maps the lifting
is unique, but this is not true for an arbitrary fibration.

Exercise 86. Show that the projection to the first factor p : B×F → B is
a fibration. Show by example that the liftings need not be unique.

The following theorem of Hurewicz says that if a map is locally a fibra-
tion, then it is so globally.

Theorem 6.8. Let p : E → B be a continuous map. Suppose that B is
paracompact and suppose that there exists an open cover {Uα} of B so that
p : p−1(Uα)→ Uα is a fibration for each Uα.

Then p : E → B is a fibration.

Proving this theorem is one of the projects for Chapter 4. The corollary
of most consequence for us is the following.

Corollary 6.9. If p : E → B is a fiber bundle over a paracompact space B,
then p is a fibration.

Proof. Exercise 86 says that the projection U×F → U is a fibration. Since
fiber bundles have this local product structure, Theorem 6.8 implies that a
fiber bundle is a fibration.
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Exercise 87. Give an example of a fibration which is not a fiber bundle.

Maps between fibrations are analogous to (and simpler than) maps of
fiber bundles.

Definition 6.10. If p : E → B and p′ : E′ → B′ are fibrations, then a map
of fibrations is a pair of maps f : B → B′, f̃ : E → E′ so that the diagram

E E′

B B′

✲f̃

❄ ❄
✲

f

commutes.

Pullbacks make sense and exist in the world of fibrations.

Definition 6.11. If p : E → B is a fibration, and f : X → B a continuous
map, define the pullback of p : E → B by f to be the map f∗(E)→ X where

f∗(E) = {(x,e) ∈ X × E|f(x) = p(e)} ⊂ X × E

and the map f∗(E)→ B is the restriction of the projection X × E → X.

The following exercise is a direct consequence of the universal property
of pullbacks.

Exercise 88. Show that f∗(E)→ X is a fibration.

The following notation will be in effect for the rest of the book. If
H : Y × I → B is a homotopy, then Ht : Y → B is the homotopy at time t,
i.e.

Ht(y) = H(y, t).

6.3. The fiber of a fibration

A fibration need not be a fiber bundle. Indeed, the definition of a fibration is
less rigid than that of a fiber bundle and it is not hard to alter a fiber bundle
slightly to get a fibration which is not locally trivial. Nevertheless, a fibration
has a well defined fiber up to homotopy. The following theorem asserts this,
and also states that a fibration has a substitute for the structure group
of a fiber bundle, namely the group of homotopy classes of self-homotopy
equivalences of the fiber.

It is perhaps at first surprising that the homotopy lifting property in
itself is sufficient to endow a map with the structure of a “fiber bundle up
to homotopy”. But as we will see, the notion of a fibration is central in
studying spaces up to homotopy.
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Theorem 6.12. Let p : E → B be a fibration. Assume B is path connected.
Then all fibers Eb = p−1(b) are homotopy equivalent. Moreover every

path α : I → B defines a homotopy class α∗ of homotopy equivalences
Eα(0) → Eα(1) which depends only on the homotopy class of α rel endpoints,
in such a way that multiplication of paths corresponds to composition of
homotopy equivalences.

In particular, there exists a well-defined group homomorphism

[α] �→ (α−1)∗

π1(B, b0)→ Homotopy classes of self-homotopy equivalences of Eb0 .

Remark. The reason why we use α �→ (α−1)∗ instead of α �→ α∗ is because
by convention, multiplication of paths in B is defined so that αβ means first
follow α, then β. This implies that (αβ)∗ = β∗ ◦ α∗, and so we use the
inverse to turn this anti-homomorphism into a homomorphism.

Proof. Let b0, b1 ∈ B and let α be a path in B from b0 to b1. The inclusion
Eb0 ↪→ E completes to a diagram

Eb0 × {0} E

Eb0 × I B
❄

✲

❄

p

✲
H

where H(e, t) = α(t). Since E → B is a fibration, H lifts to E, i.e. there
exists a map H̃ such that

Eb0 × {0} E

Eb0 × I B
❄

✲

❄

p

�
�

�
��✒

H̃

✲
H

commutes.
Notice that the homotopy at time t = 0, H̃0 : Eb0 → E is just the

inclusion of the fiber Eb0 in E. Furthermore, p ◦ H̃t is the constant map at
α(t), so the homotopy H̃ at time t = 1 is a map H̃1 : Eb0 → Eb1 . We will let
α∗ = [H̃1] denote the homotopy class of this map. Since H̃ is not unique,
we need to show that another choice of lift gives a homotopic map. We will
in fact show something more general. Suppose α′ : I → B is another path
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homotopic to α rel end points. Then as before, we obtain a solution H̃ ′ to
the problem

Eb0 × {0} E

Eb0 × I B
❄

✲

❄

p

�
�

�
��✒

H̃′

✲
H′

(where H ′ = α′ ◦ projI) and hence a map H̃ ′1 : Eb0 → Eb1 .

Claim. H̃1 is homotopic to H̃ ′1.

Proof of Claim. Since α is homotopic rel end points to α′, there exists a
map Λ : Eb0 × I × I → B such that

Λ(e,s,t) = F (s,t)

where F (s,t) is a homotopy rel end points of α to α′. (So F0 = α and
F1 = α′.) The solutions H̃ and H̃ ′ constructed above give a diagram

(Eb0 × I)× {0, 1} ∪ (Eb0 × {0})× I E

(Eb0 × I)× I B
❄

✲Γ

❄

p

✲
Λ

where
Γ(e,s,0) = H̃(e,s)

Γ(e,s,1) = H̃ ′(e,s), and,

Γ(e,0,t) = e.

Let U = I × {0,1} ∪ {0} × I ⊂ I × I There exists a homeomorphism
ϕ : I2 → I2 taking U to I × {0} as indicated in the following picture.

ϕ
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Thus the diagram

Eb0 × I × {0} Eb0 × U E

Eb0 × I × I Eb0 × I2 B
❄

✛Id×ϕ ✲Γ

❄ ❄

p

✛
ϕ

✲
Λ

has the left two horizontal maps homeomorphisms. Since the homotopy
lifting property applies to the outside square, there exists a lift Λ̃ : Eb0×I2 →
E so that

Eb0 × U E

Eb0 × I2 B

✲Γ

❄ ❄

p

�
�

�
��✒

Λ̃

✲
Λ

commutes.
But then Λ̃ is a homotopy from H̃ : Eb0 × I → E to H̃ ′ : Eb0 × I → E.

Restricting to Eb0 × {1} we obtain a homotopy from H̃1 to H̃ ′1. Thus the
homotopy class α∗ = [H̃1] depends only on the homotopy class of α rel end
points, establishing the claim.

Clearly (αβ)∗ = β∗ ◦ α∗ if β(0) = α(1). In particular, if β = α−1 then
(const)∗ = β∗ ◦α∗, where const denotes the constant path at b0. But clearly

(const)∗ = [IdEb0
]

Thus β∗ is a homotopy inverse of α∗.
This shows that α∗ is a homotopy equivalence, and since B is path

connected, all fibers are homotopy equivalent.
Applying this construction to α ∈ π1(B,b0) we see that α∗ defines a ho-

motopy equivalence of Eb0 , and products of loops correspond to composites
of homotopy equivalences. The following exercise completes the proof.

Exercise 89. Show that the set of homotopy classes of homotopy equiva-
lences of a space X forms a group under composition. That is, show that
multiplication and taking inverses is well defined.

Theorem 6.12 asserts that the fibers p−1(b) = Eb for b ∈ B are homotopy
equivalent. Thus we will abuse terminology slightly and refer to any space
in the homotopy equivalence class of the space Eb for any b ∈ B as the fiber
of the fibration p : E → B.
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Since homotopy equivalences induce isomorphisms in homology or coho-
mology, a fibration with fiber F gives rise to local coefficients systems whose
fiber is the homology or cohomology of F , as the next corollary asserts.

Corollary 6.13. Let p : E → B be a fibration and let F = p−1(b0).
Then p gives rise to local coefficient systems over B with fiber Hn(F ;M) or
Hn(F ;M) for any n and any coefficient group M . These local coefficients
are obtained from the representations via the composite homomorphism

π1(B,b0)→
{ Homotopy classes of self-homotopy

equivalences F → F

}
→ Aut(A)

where A = Hn(F ;M) or A = Hn(F ;M).

Proof. The maps f∗ : Hn(F ;M) → Hn(F ;M) and f∗ : Hn(F ;M) →
Hn(F ;M) induced by a homotopy equivalence f : F → F are isomorphisms
which depend only on the homotopy class of f . Thus there is a function
from the group of homotopy classes of homotopy equivalences of F to the
group of automorphisms of A. This is easily seen to be a homomorphism.
The corollary follows.

We see that a fibration gives rise to many local coefficient systems, by
taking homology or cohomology of the fiber. More generally one obtains a
local coefficient system given any homotopy functor from spaces to abelian
groups (or R-modules), such as the generalized homology theories which we
introduce in Chapter 8.

With some extra hypotheses one can also apply this to homotopy func-
tors on the category of based spaces. For example, we will see below that if
F is simply connected, or more generally “simple,” then taking homotopy
groups πnF also gives rise to a local coefficient system. For now however,
observe that the homotopy equivalences constructed by Theorem 6.12 need
not preserve base points.

6.4. Path space fibrations

An important family of fibrations are the path space fibrations. They will
be useful in replacing arbitrary maps by fibrations and then in extending a
fibration to a “fiber sequence”.

Definition 6.14. Let (Y, y0) be a based space. The path space Py0Y is the
space of paths in Y starting at y0, i.e.

Py0Y = Map(I,0;Y ,y0) ⊂ Map(I,Y ),



6.4. Path space fibrations 121

topologized as in the previous subsection, i.e. as a compactly generated
space. The loop space Ωy0Y is the space of all loops in Y based at y0, i.e.

Ωy0Y = Map(I,{0,1};Y ,{y0}).

Often the subscript y0 is omitted in the above notation. Let Y I =
Map(I, Y ). This is called the free path space. Let p : Y I → Y be the
evaluation at the end point of a path: p(α) = α(1).

By our conventions on topologies, p : Y I → Y is continuous. The
restriction of p to Py0Y is also continuous.

Exercise 90. Let y0, y1 be two points in a path-connected space Y . Prove
that Ωy0Y and Ωy1Y are homotopy equivalent.

Theorem 6.15.

1. The map p : Y I → Y , where p(α) = α(1), is a fibration. Its fiber
over y0 is the space of paths which end at y0, a space homeomorphic
to Py0Y .

2. The map p : Py0Y → Y is a fibration. Its fiber over y0 is the loop
space Ωy0Y .

3. The free path space Y I is homotopy equivalent to Y . The projection
p : Y I → Y is a homotopy equivalence.

4. The space of paths in Y starting at y0, Py0Y , is contractible.

Proof. 1. Let A be a space, and suppose a homotopy lifting problem

A× {0} Y I

A× I Y

✲g

❄ ❄

p

✲
H

�

�

�

�

�

�

�

�

�

�

�

�

✒
H̃

is given. We write g(a) instead of g(a, 0). For each a ∈ A, g(a) is a path
in Y which ends at p(g(a)) = H(a, 0). This point is the start of the path
H(a,−).

H(a, 0)

g(a) H(a,−)
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We will define H̃(a, s)(t) to be a path running along the path g(a) and
then part way along H(a,−), ending at H(a, s).

H̃(a, s)(−)

g(a) H(a,−) H(a, s)

Define

H̃(a, s)(t) =

{
g(a)((1 + s)t) if 0 ≤ t ≤ 1/(1 + s),
H(a, ((1 + s)t− 1) if 1/(1 + s) ≤ t ≤ 1.

Then H̃(a, s)(t) is continuous as a function of (a, s, t), so H̃(a,s) ∈ Y I and by
our choice of topologies H̃ : A× I → Y I is continuous. Also H̃(a,0) = g(a)
and p(H̃(a, s)) = H̃(a, s)(1) = H(a, s). Thus the lifting problem is solved
and so p : Py0Y → Y is a fibration. The fiber p−1(y0) consists of all paths
ending at y0 and the path space Py0Y consists of all paths starting at y0. A
homeomorphism is given by

α(t) �→ α(t) = α(1− t).

This proves 1.

2. has the same proof; the fact that g(a) starts at y0 means that H̃(a, s)
also starts at y0.

3. Let i : Y → Y I be the map taking y to the constant path at y. Then
p ◦ i = IdY . Let F : Y I × I → Y I be given by

F (α,s)(t) = α(s + t− st).

Then F (α,0) = α and F (α, 1) is the constant path at α(1) which in turn
equals i ◦ p(α). Thus F shows that the identity is homotopic to i ◦ p. Hence
p and i are homotopy inverses.

4. has the same proof as 3.
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6.5. Fiber homotopy

Recall a map of fibrations (p : E → B) to (p′ : E′ → B′) is a commutative
diagram

E E′

B B′

✲f̃

❄
p

❄
p′

✲
f

Definition 6.16. A fiber homotopy between two morphisms (f̃i, fi) i = 0, 1
of fibrations is a commutative diagram

E × I E′

B × I B′

✲H̃

❄

p×Id

❄

p′

✲
H

with H0 = f0, H1 = f1, H̃0 = f̃0, and H̃1 = f̃1.
Given two fibrations over B, p : E → B and p′ : E′ → B, we say they

have the same fiber homotopy type if there exists a map f̃ from E to E′

covering the identity map of B, and a map g̃ from E′ to E covering the
identity map of B, such that the composites

E E E′ E′

B B
❅❅❘

✲g̃◦f̃

��✠ ❅❅❘

✲f̃◦g̃

��✠

are each fiber homotopic to the identity via a homotopy which is the identity
on B (i.e. there exists H̃ : E×I → E such that p(H̃(e,t)) = p(e), H̃0 = g̃◦ f̃ ,
and H̃1 = IdE . Similarly for f̃ ◦ g̃). One says that f̃ and g̃ are fiber homotopy
equivalences.

Notice that a fiber homotopy equivalence f̃ : E → E′ induces a homo-
topy equivalence Eb0 → E′b0 on fibers.

6.6. Replacing a map by a fibration

Let f : X → Y be a continuous map. We will replace X by a homotopy
equivalent space Pf and obtain a map Pf → Y which is a fibration. In short,
every map is equivalent to a fibration. If f is a fibration to begin with, then
the construction gives a fiber homotopy equivalent fibration. We assume
that Y is path-connected and X is non-empty.

Let q : Y I → Y be the path space fibration, with q(α) = α(0); evaluation
at the starting point.
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Definition 6.17. The pullback Pf = f∗(Y I) of the path space fibration
along f is called the mapping path space.

Pf = f∗(Y I) Y I

X Y

✲

❄ ❄
q

✲
f

(6.1)

An element of Pf is a pair (x, α) where α is a path in Y and x is a point in
X which maps via f to the starting point of α.

The mapping path fibration

p : Pf → Y

is obtaining by evaluating at the end point

p(x, α) = α(1).

Theorem 6.18. Suppose that f : X → Y is a continuous map.

1. There exists a homotopy equivalence h : X → Pf so that the diagram

X Pf

Y

❅
❅❘f

✲h

��✠p

commutes.

2. The map p : Pf → Y is a fibration.

3. If f : X → Y is a fibration, then h is a fiber homotopy equivalence.

Proof. 1. Let h : X → Pf be the map

h(x) = (x, constf(x))

where constf(x) means the constant path at f(x). Then f = p ◦ h, so the
triangle commutes. The homotopy inverse of h is p1 : Pf → X, projection
on the X-component. Then p1 ◦h = IdX . The homotopy from h◦p1 to IdPf

is given by

F ((x, α), s) = (x, αs),

where αs is the path s �→ α(st) (We have embedded X in Pf via h, and have
given a deformation retract of Pf to X by contracting a path to its starting
point.)
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2. Let the homotopy lifting problem

A× {0} Pf

A× I Y

✲g

❄ ❄

p

✲
H

�

�

�

�

�

�

�

�

�

�

�

�

✒
H̃

be given. For a ∈ A, we write g(a) instead of g(a, 0). Furthermore g(a) has
an X-component and a Y I -component and we write

g(a) = (g1(a), g2(a)) ∈ Pf ⊂ X × Y I .

Note that since g(a) is in the pullback, g1(a) maps via f to the starting
point of the path g2(a) and the square above commutes, so the endpoint of
the path g2(a) is the starting point of the path H(a,−). Here is a picture
of g(a) and H(a,−).

g1(a)

f

H(a, 1)
g2(a)(−) H(a,−)

The lift H̃ will have two components. The X-component will be constant
in s,

H̃1(a, s) = g1(a)

The Y I -component of the lift will be a path running along the path g2(a)
and then part way along H(a,−), ending at H(a, s).

Here is a picture of H̃(a, s).

g1(a)

f

H(a, s)
g2(a)(−) H(a,−)
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A formula is given by

H̃(a, s) = (g1(a), H̃2(a, s)(−)) ∈ Pf ⊂ X × Y I ,

where

H̃2(a, s)(t) =

{
g2(a)((1 + s)t) if 0 ≤ t ≤ 1/(1 + s),
H(a, ((1 + s)t− 1) if 1/(1 + s) ≤ t ≤ 1.

We leave it to the reader to check H̃ is continuous and that it is a lift of H
extending the map g. Thus we have shown the mapping path fibration is a
fibration.

3. Finally suppose that f : X → Y is itself a fibration. In the proof of
1. we showed that

h : X → Pf , h(x) = (x, constf(x))

and
p1 : Pf → X p1(x,α) = x

are homotopy inverses. Note h is a map of fibrations (covering the identity),
but p1 is not, since f ◦ p1(x, α) is the starting point of α and p(x, α) is the
endpoint of α.

Let γ : Pf × I → Y be the map γ(x,α,t) = α(t). Since f is a fibration,
the homotopy lifting problem

Pf × {0} X

Pf × I Y

✲p1

❄ ❄

f

✲
γ

�

�

�

�

�

�

�

�

�

�

�

�

✒
γ̃

has a solution. Define g : Pf → X by g(x, α) = γ̃(x, α, 1). Then the
diagrams

X Pf X Pf

Y Y

❅❅❘f

✲h

��✠ ❅❅❘f

✛ g

��✠p

commute.
Thus h and g are maps of fibrations, and in fact homotopy inverses since

g is homotopic to p1. But this is not enough.
To finish the proof, we need to show that g ◦ h is homotopic to IdX by

a vertical homotopy (i.e. a homotopy over the identity IdY : Y → Y ) and
h ◦ g is homotopic to IdPf

by a vertical homotopy.
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Let F : X × I → X be the map

F (x,t) = γ̃(x,constf(x),t).

Then

1. F (x,0) = γ̃(x,constf(x),0) = p1(x,constf(x)) = x, and

2. F (x,1) = γ̃(x,constf(x),1) = g ◦ h(x).

Hence F is a homotopy from IdX to g ◦ h. Moreover,

f(F (x,t)) = f(γ̃(x,constf(x),t)) = γ(x,constf(x),t) = f(x)

so F is a vertical homotopy.
Here is a picture of γ̃

g(x)

x
γ̃(α, x)(−)

α

The vertical homotopy from IdPf
to h ◦ g is given by contracting along

paths to their endpoints. Explicitly H : Pf × I → Pf is

H(x, α, s) = (γ̃(x, α, s), (t �→ α(s + t− st))).

Given a map f : X → Y , it is common to be sloppy and say “F is the
fiber of f”, or “F ↪→ X → Y is a fibration” to mean that after replacing
X by the homotopy equivalent space Pf and the map f by the fibration
Pf → Y , the fiber is a space of the homotopy type of F .

6.7. Cofibrations

Definition 6.19. A map i : A → X is called a cofibration, or satisfies the
homotopy extension property (HEP), if the following diagram has a solution
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for any space Y .

A× {0} A× I

Y

X × {0} X × I
❄

i

✲

❄

i×Id

✑
✑✑✰

✑
✑✑✸

✲
�

�

�

�

�

�

�❦

Cofibration is a “dual” notion to fibration, using the adjointness of the
functors −×I and −I , and reversing the arrows. To see this, note that since
a map A × I → B is the same as a map A → BI , the diagram defining a
fibration f : X → Y can be written

X XI

Z Y I .

❄

f

✛eval. at 0

✻

✲
�

�

�

�

�

�

�

�

�

�

✒

The diagram defining a cofibration f : Y → X can be written as

X X × I

Z Y × I.
❄

✲i0

�

�

�

�

�

�

�

�

�

�

�✠

✻
f×I

✛

For “reasonable” spaces, any cofibration i : A → X can be shown to
be an embedding whose image is closed in X. We will only deal with cofi-
brations given by a pair (X, A) with A a closed subspace. In that case one
usually says that A ↪→ X is a cofibration if the problem

X × {0} ∪ A× I Y

X × I
❄

i

✲f∪h

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

as a solution for all spaces Y , maps f : X → Y and homotopies h : A×ItoY
extending f |A. Hence the name homotopy extension property.

Definition 6.20. Let X be compactly generated, A ⊂ X a subspace. Then
(X,A) is called an NDR–pair (NDR stands for “neighborhood deformation
retract”) if there exist continuous maps u : X → I and h : X × I → X so
that:
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1. A = u−1(0),
2. h(−, 0) = IdX ,
3. h(a, t) = a for all t ∈ I, a ∈ A, and
4. h(x, 1) ∈ A for all x ∈ X such that u(x) < 1.

In particular the neighborhood U = {x ∈ X|u(x) < 1} of A deformation
retracts to A.

Definition 6.21. A pair (X,A) is called a a DR–pair (DR stands for “de-
formation retract”) if 1,2,3 hold, but also

4′ h(x, 1) ∈ A for all x ∈ X.

(This is slightly stronger than the usual definition of deformation retracts,
because of the requirement that there exists a function u : X → I such that
u−1(0) = A.)

Theorem 6.22 (Steenrod). Equivalent are:

1. (X,A) is an NDR pair.
2. (X × I, X × 0 ∪A× I) is a DR pair.
3. X × 0 ∪A× I is a retract of X × I.
4. i : A ↪→ X is a cofibration.

For a complete proof see Steenrod’s paper [38].
Proof of some implications.

(4 ⇒ 3) Let Y = X × 0 ∪A× I. Then the solution of

X × {0} ∪ A× I X × {0} ∪ A× I

X × I
❄

✲Id

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✯

r

is a retraction of X × I to X × 0 ∪A× I.
(3 ⇒ 4) The problem

X × {0} ∪ A× I Y

X × I
❄

✲f

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

has a solution f ◦ r, where r : X × I → X × {0} ∪A× I is the retraction.
(1 ⇒ 3) (This implication says that NDR pairs satisfy the homotopy

extension property. This is the most important property of NDR pairs.)
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The map R : X × I → X × {0} ∪A× I given by

R(x, t) =


(x, t) if x ∈ A or t = 0,
(h(x, 1), t− u(x)) if t ≥ u(x) and t > 0, and
(h(x, t

u(x)), 0) if u(x) ≥ t and u(x) > 0

is a well-defined and continuous retraction.

The next result should remind you of the result that fiber bundles over
paracompact spaces are fibrations.

Theorem 6.23. If X is a CW-complex, and A ⊂ X a subcomplex, then
(X,A) is a NDR pair.

Sketch of proof. The complex X is obtained from A by adding cells. Use
a collar Sn−1 × [0,1] ⊂ Dn given by (Pv, t) �→ (1 − t

2)Pv to define u and h
cell-by-cell.

Exercise 91. If (X, A) and (Y, B) are cofibrations, so is their product

(X, A)× (Y, B) = (X × Y, X ×B ∪A× Y ).

We next establish that a pushout of a cofibration is a cofibration; this
is dual to the fact that pullback of a fibration is a fibration. The word dual
here is used in the sense of reversing arrows.

Definition 6.24. A pushout of maps f : A → B and g : A → C is a
commutative diagram

A B

C D

✲f

❄
g

❄
✲

which is initial among all such commutative diagrams, i.e. any problem of
the form

A B

C D

E

✲f

❄
g ❆

❆
❆
❆
❆
❆❆

❄
✲

❍❍❍❍❍❍❍❥

�

�

�

�

�

�

�❘

has a unique solution.
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Pushouts are unique up to homeomorphism; this is proved using an
“initial object” argument. Sometimes we just say D is the pushout, and
sometimes we write D = f∗C, the pushout of g along f .

Pushouts always exist. They are constructed as follows.
When A is empty the pushout is the disjoint union B � C. A concrete

realization is given by choosing base points b0 ∈ B and c0 ∈ C and setting

B�C = {(b, c0, 0) ∈ B ×C × I | b ∈ B} ∪ {(b0, c, 1) ∈ B ×C × I | c ∈ C}.

In general, a concrete realization for the pushout of f : A → B and
g : A→ C is

B � C

f(a) ∼ g(a)
.

Note that this is a quotient of a sum, just like the pushout in the category
of abelian groups.

Theorem 6.25. If g : A→ C is a cofibration and

A B

C f∗C

✲f

❄

g

❄
✲

is a pushout diagram then B → f∗C is a cofibration.

The proof is obtained by reversing the arrows in the dual argument for
fibrations. We leave it as an exercise.

Exercise 92. Prove Theorem 6.25.

6.8. Replacing a map by a cofibration

Let f : A → X be a continuous map. We will replace X by a homotopy
equivalent space Mf and obtain a map A → Mf which is a cofibration. In
short, every map is equivalent to a cofibration. If f is a cofibration to begin
with, then the construction gives a homotopy equivalent cofibration relative
to A.

Definition 6.26. The mapping cylinder of a map f : A→ X is the space

Mf =
(A× I)�X

(a, 1) ∼ f(a)
.
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A× I

X

Mf

The mapping cone of f : A→ X is

Cf =
Mf

A× {0} .

A×I
A×{0}

X

Cf

Note that the mapping cylinder Mf can also be defined as the pushout
of

A× {1} X × {1}

A× I

✲

❄

This shows the analogue with the mapping path fibration Pf more clearly.
Sometimes Pf is called the mapping cocylinder by those susceptible to cat-
egorical terminology.
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The “dual” result to Theorem 6.18 is the following.

Theorem 6.27. Let f : A→ X be a map. Let i : A→Mf be the inclusion
i(a) = [a, 0].

1. There exists a homotopy equivalence h : Mf → X so that the diagram

A

X Mf

��✠
f

❅❅❘
i

✛
h

commutes.
2. The inclusion i : A→Mf is a cofibration.
3. If f : A → X is a cofibration, then h is a homotopy equivalence

rel A, in particular h induces a homotopy equivalence of the cofibers
Cf → X/f(A).

Proof. 1. Let h : Mf → X be the map

h[a, s] = f(a), h[x] = x.

Then f = h ◦ i so the diagram commutes. The homotopy inverse of h is the
inclusion j : X → Mf . In fact, h ◦ j = IdX , and the homotopy from IdMf

to j ◦ h squashes the mapping cylinder onto X and is given by

F ([a, s], t) = [a, s + t− st]

F ([x], t) = [x].

2. By the implication (3⇒ 4) from Steenrod’s theorem (Theorem 6.22),
we need to construct a retraction

R : Mf × I →Mf × 0 ∪A× I

A× I
R

1
I
0

Mf × I Mf × {0} ∪A× I

Let
r : I × I → I × 0 ∪ 0× I
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be a retraction so that r(1 × I) = {(1, 0)}. (First retract the square onto
3 sides and then contract a side to a point.) Define R([a, s], t) = [a, r(s, t)]
and R([x], t) = ([x], 0). Thus i : A→Mf is a cofibration.

3. If f : A ↪→ X is a cofibration, by Steenrod’s theorem there is a
retraction

r : X × I → X × 1 ∪ f(A)× I

and an obvious homeomorphism

q : X × 1 ∪ f(A)× I →Mf .

Define g : X → Mf by g(x) = q(r(x, 0)). We will show that g and h are
homotopy inverses rel A (recall h[a, s] = f(a) and h[x] = x).

Define the homotopy
H : X × I → X

as H = h ◦ r. Then H(x, 0) = h ◦ g(x), H(x, 1) = x, and H(f(a), t) = f(a).
Define the homotopy

F : Mf × I →Mf

by F ([x], t) = q(r(x, t)) and F ([a, s], t) = q(r(f(a), st)). Then F (x, 0) =
g ◦ h(x), H(−, 1) = IdMf

, and F (i(a), t) = i(a). The reader is encouraged
to verify these formulae, or to draw the motivating pictures.

6.9. Sets of homotopy classes of maps

We introduce the following notation. If X, Y are spaces, then [X,Y ] denotes
the set of homotopy classes of maps from X to Y , i.e.

[X,Y ] = Map(X,Y )/ ∼
where f ∼ g if f is homotopic to g.

Notice that if Y is path-connected, then the set [X,Y ] contains a distin-
guished class of maps, namely the unique class containing all the constant
maps. We will use this as a base point for [X,Y ] if one is needed.

If X has a base point x0, and Y has a base point y0, let [X,Y ]0 denote
the based homotopy classes of based maps, where a based map is a map
f : (X,x0) → (Y ,y0). Then [X,Y ]0 has a distinguished class, namely the
class of the constant map at y0. (In the based context, it is not necessary to
assume Y is path-connected to have this distinguished class.) Given a map
f : X → Y let [f ] denote its homotopy class in [X, Y ] or [X, Y ]0. Notice
that if X and Y are based spaces there is a forgetful map [X, Y ]0 → [X, Y ].
This map need not be injective or surjective.

The notion of an exact sequence of sets is a useful generalization of the
corresponding concept for groups.
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Definition 6.28. A sequence of functions

A
f−→ B

g−→C

of sets (not spaces or groups) with base points is called exact at B if

f(A) = g−1(c0)

where c0 is the base point of C.

All that was necessary here was that C be based. Notice that if A, B, C
are groups, with basepoints the identity element, and f, g homomorphisms,
then A → B → C is exact as a sequence of sets if and only if it is exact as
a sequence of groups.

The following two theorems form the cornerstone of constructions of
exact sequences in algebraic topology.

Theorem 6.29 (basic property of fibrations). Let p : E → B be a fibra-
tion, with fiber F = p−1(b0) and B path-connected. Let Y be any space.
Then the sequence of sets

[Y ,F ] i∗−→ [Y ,E]
p∗−→ [Y ,B]

is exact.

Proof. Clearly p∗(i∗[g]) = 0.
Suppose f : Y → E so that p∗[f ] = [const], i.e. p ◦ f : Y → B is

null homotopic. Let G : Y × I → B be a null homotopy, and then let
H : Y × I → E be a solution to the lifting problem

Y × {0} E

Y × I B

✲f

❄ ❄

p

✲
G

�

�

�

�

�

�

�

�

�

�

�

�

✒
H

Since p ◦ H(y,1) = G(y,1) = b0, H(y,1) ∈ F = p−1(b0). Thus f is
homotopic into the fiber, so [f ] = i∗[H(−,1)].

Theorem 6.30 (basic property of cofibrations). Let i : A ↪→ X be a cofi-
bration, with cofiber X/A. Let q : X → X/A denote the quotient map. Let
Y be any path-connected space. Then the sequence of sets

[X/A,Y ]
q∗−→ [X,Y ] i∗−→ [A,Y ]

is exact.
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Proof. Clearly i∗(q∗([g])) = [g ◦ q ◦ i] = [const].
Suppose f : X → Y is a map and suppose that f|A : A → Y is nullho-

motopic. Let h : A × I → Y be a null homotopy. The solution F to the
problem

X × {0} ∪ A× I Y

X × I
❄

i

✲f∪h

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

F

defines a map f ′ = F (−,1) homotopic to f whose restriction to A is constant,
i.e. f ′(A) = y0. Therefore the diagram

X Y

X/A
❄

q

✲f ′

�

�

�

�

�

�

�

✒
g

can be completed, by the definition of quotient topology. Thus [f ] = [f ′] =
q∗[g].

6.10. Adjoint of loops and suspension; smash
products

Definition 6.31. Define K∗ to be the category of compactly generated
spaces with a non-degenerate base point, i.e. (X,x0) is an object of K∗
if the inclusion {x0} ⊂ X is a cofibration. The morphisms in K∗ are the
base point preserving continuous maps.

Exercise 93. Prove the base-point versions of the previous two theorems:

1. If F ↪→ E → B is a base point preserving fibration, then for any
Y ∈ K∗

[Y ,F ]0 → [Y ,E]0 → [Y ,B]0
is exact.

2. If A ↪→ X → X/A is a base point preserving cofibration, then for any
Y ∈ K∗

[X/A,Y ]0 → [X,Y ]0 → [A,Y ]0
is exact.

Most exact sequences in algebraic topology can be derived from Theo-
rems 6.29, 6.30, and Exercise 93. We will soon use this exercise to establish
exact sequences of homotopy groups. To do so, we need to be careful about
base points and adjoints. Recall that if (X, x0) and (Y, y0) are based spaces,
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then Map(X, Y )0 is the set of maps of pairs (X, x0) → (Y, y0) with the
compactly generated topology.

Definition 6.32. The smash product of based spaces is

X ∧ Y =
X × Y

X ∨ Y
=

X × Y

X × {y0} ∪ {x0} ∪ Y
.

Note that the smash product X∧Y is a based space. Contrary to popular
belief, the smash product is not the product in the category K∗, although
the wedge product

X ∨ Y = (X × {y0}) ∪ ({x0} × Y ) ⊂ X × Y

is the sum in K∗. The smash product is the adjoint of the based mapping
space. The following theorem follows from the unbased version of the adjoint
theorem (Theorem 6.5), upon restricting to based maps.

Theorem 6.33 (adjoint theorem). There is a (natural) homeomorphism

Map(X ∧ Y, Z)0 ∼= Map(X, Map(Y, Z)0)0

Definition 6.34. The (reduced) suspension of a based space (X, x0) is SX =
S1 ∧ X. The (reduced) cone is CX = I ∧ X. Here the circle is based by
1 ∈ S1 ⊂ C and the interval by 0 ∈ I.

Using the usual identification I/{0, 1} = S1 via t �→ e2πit, one sees

SX =
X × I

X × {0, 1} ∪ {x0} × I

In other words, if ΣX is the unreduced suspension and cone(X) is the unre-
duced cone (= ΣX/X × {0}), then there are quotient maps

ΣX → SX cone(X)→ CX

given by identifying {x0} × I shaded in the following figure.



138 6. Fibrations, Cofibrations and Homotopy Groups

{x0} × I {x0} × I

ΣX cone(X)

Notice that taking reduced suspensions and reduced cones is functo-
rial. Reduced suspensions and cones are more useful than the unreduced
variety since they have canonical base points and satisfy adjoint proper-
ties. Nonetheless, it is reassuring to connect them with the more familiar
unreduced versions.

Exercise 94. If X ∈ K∗ (i.e. the inclusion {x0} → X is a cofibration),
then the quotient maps ΣX → SX and cone(X) → CX are homotopy
equivalences.

Proposition 6.35. The reduced suspension SSn is homeomorphic to Sn+1

and the reduced cone CSn is homeomorphic to Dn+1.

Exercise 95. Prove Proposition 6.35. This shows in a special case that the
smash product is associative. Prove associativity of the smash product in
general.

Corollary 6.36. Si ∧ Sj is homeomorphic to Si+j.

We defined loop spaces by Ωx0X = Map(I, {0, 1};X, {x0}), but by using
the identification of the circle as a quotient space of the interval, one sees

Ωx0X = Map(S1, X)0
Then a special case of Theorem 6.33 shows the following.

Theorem 6.37 (loops and suspension are adjoints). The spaces

Map(SX, Y )0
and

Map(X, ΩY )0
are naturally homeomorphic.
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6.11. Fibration and cofibration sequences

We will see eventually that the homotopy type of a fiber of a fibration mea-
sures how far the fibration is from being a homotopy equivalence. (For
example, if the fiber is contractible then the fibration is a homotopy equiv-
alence.) More generally given a map f : X → Y , one can turn it into a
fibration Pf → Y as above; the fiber of this fibration measures how far f is
from a homotopy equivalence.

After turning f : X → Y into a fibration Pf → Y one then has an
inclusion of the fiber F ⊂ Pf . Why not turn this into a fibration and see
what happens? Now take the fiber of the resulting fibration and continue
the process . . .

Similar comments apply to cofibrations. Theorem 6.39 below identifies
the resulting iterated fibers and cofibers. We first introduce some terminol-
ogy.

Definition 6.38. If f : X → Y is a map, the homotopy fiber of f is the
fiber of the fibration obtained by turning f into a fibrations. The homotopy
fiber is a space, well-defined up to homotopy equivalence. Usually one is
lazy and just calls this the fiber of f .

Similarly, the homotopy cofiber of f : X → Y is the mapping cone Cf ,
the cofiber of X →Mf .

Theorem 6.39.

1. Let F ↪→ E → B be a fibration. Let Z be the homotopy fiber of
F ↪→ E, so Z → F → E is a fibration (up to homotopy). Then Z is
homotopy equivalent to the loop space ΩB.

2. Let A ↪→ X → X/A be a cofibration sequence. Let W be the homotopy
cofiber of X → X/A, so that X → X/A → W is a cofibration (up
to homotopy). Then W is homotopy equivalent to the (unreduced)
suspension ΣA.

Proof. 1. Let f : E → B be a fibration with fiber F = f−1(b0). Choose
a base point e0 ∈ F . In Section 6.6 we constructed a fibration p : Pf → B
with

Pf = {(e,α) ∈ E ×BI |f(e) = α(0)}

and p(e,α) = α(1), and such that the map h : E → Pf given by h(e) =
(e, constf(e)) is a fiber homotopy equivalence.

Let (Pf )0 = p−1(b0), so (Pf )0 ↪→ Pf
p−→ B is a fibration equivalent to

F ↪→ E
f−→ B.
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Define π : (Pf )0 → E by π(e,α) = e. Notice that

(Pf )0 = {(e,α)|f(e) = α(0), α(1) = b0}.

e

f b0

α

f(e)

Claim. π : (Pf )0 → E is a fibration with fiber Ωb0B.

Proof of claim. Clearly π−1(e0) = {(e0,α)|α(0) = α(1) = b0} is homeo-
morphic to the loop space, so we just need to show π is a fibration. Given
the problem

A× {0} (Pf )0

A× I E

✲g

❄ ❄
π

�

�

�

�

�

�

�

�

�

�

�✸H̃

✲
H

the picture is

H(a,−) g1(a)

f b0

g2(a)(−)

Hence we can set H̃(a, s) = (H(a, s), H̃2(a, s)) where H̃2(a, s))(−) has
the picture
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b0

f(H(a, s))
g2(a)(−)

and is defined by

H̃2(a, s))(t) =

{
f(H(y,−(1 + s)t + s)) if 0 ≤ t ≤ s/(s + 1),
g2(a)((s + 1)t− s if s/(s + 1) ≤ t ≤ 1.

The map F ↪→ (Pf )0 is a homotopy equivalence, since E → Pf is a fiber
homotopy equivalence. Thus the diagram

F

E

(Pf )0
❄

�

❅
❅❘

�
�✒
π

shows that the fibration π : (Pf )0 → E is obtained by turning F ↪→ E into
a fibration, and the homotopy fiber is Ωb0B.

2. The map X → X/A is equivalent to X ↪→ Ci = X ∪ cone(A) where
i : A ↪→ X. The following picture makes clear that Ci/X = ΣA. The fact
that X → Ci is a cofibration is left as an exercise.

i
A

X Ci = X∪ cone(A) ∼ X/A ΣA = Ci/X

Exercise 96. Show that X ↪→ Ci = X ∪ cone(A) is a cofibration.

We have introduced the notion of the loop space ΩX of a based space
X as the space of paths in X which start and end at the base point. The
loop space is itself a based space with base point the constant loop at the
base point of X. Let ΩnX denote the n-fold loop space of X. Similarly the
reduced suspension SX of X is a based space. Let SnX denote the n-fold
suspension of X.
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The previous theorem can be restated in the following convenient form.

Theorem 6.40.

1. Let A ↪→ X be a cofibration. Then any two consecutive maps in the
sequence

A→ X → X/A→ ΣA→ ΣX → · · · → ΣnA→ ΣnX → Σn(X/A)→ · · ·

have the homotopy type of a cofibration followed by projection onto
the cofiber.

1′. Let A ↪→ X be a base point preserving cofibration. Then any two
consecutive maps in the sequence

A→ X → X/A→ SA→ SX → · · · → SnA→ SnX → Sn(X/A)→ · · ·

have the homotopy type of a cofibration followed by projection onto
the cofiber.

2. Let E → B be a fibration with fiber F . Then any two consecutive
maps in the sequence

· · · → ΩnF → ΩnE → ΩnB → · · · → ΩF → ΩE → ΩB → F → E → B

have the homotopy type of a fibration preceded by the inclusion of its
fiber.

To prove 1′., one must use reduced mapping cylinders and reduced cones.

6.12. Puppe sequences

Lemma 6.41. Let X and Y be spaces in K∗.
1. [X,ΩY ]0 = [SX,Y ]0 is a group.

2. [X,Ω(ΩY )]0 = [SX, ΩY ]0 = [S2X, Y ]0 is an abelian group.

Sketch of proof. The equalities follow from Theorem 6.37, the adjointness
of loops and suspension. The multiplication can be looked at in two ways:
first on [SX, Y ]0 as coming from the map

ν : SX → SX ∨ SX

given by collapsing out the “equator” X × 1/2. Then define

fg :=
def

ν(f ∨ g)
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ν f

∨
g

SX SX ∨ SX Y

The second interpretation of multiplication is on [X, ΩY ]0 and comes from
composition of loops

∗ : ΩY × ΩY → ΩY

with (fg)x = f(x) ∗ g(x).
The proof of 2 is obtained by meditating on the following sequence of

pictures.

* *f g
f g

∼ ∼ ∼
g fg f

Exercise 97. Convince yourself that the two definitions of multiplication
on [X,ΩY ]0 = [SX,Y ]0 are the same and that π1(Y, y0) = [SS0, Y ]0.

The last lemma sits in a more general context. A loop space is a example
of an H-group and a suspension is an example of a co-H-group. See [36] or
[43] for precise definitions, but here is the basic idea. An H-group Z is a
based space with a “multiplication” map µ : Z ×Z → Z and an “inversion”
map ϕ : X → X which satisfy the axioms of a group up to homotopy (e.g.
is associative up to homotopy). For a topological group G and any space
X, Map(X, G) is a group, similarly for an H-group Z, [X, Z]0 is a group.
To define a co-H-group, one reverses all the arrows in the definition of H-
group, so there is a co-multiplication ν : W → W ∨W and a co-inversion
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ψ : W → W . Then [W, X]0 is a group. Finally, there is a formal, but
occasionally very useful result. If W is a co-H-group and Z is an H-group,
then the two multiplications on [W, Z]0 agree and are abelian. Nifty, huh?
One consequence of this is that π1(X, x0) of an H-group (e.g. a topological
group) is abelian.

Combining Lemma 6.41 with Theorem 6.40 and Exercise 93 yields the
proof of the following fundamental theorem.

Theorem 6.42 (Puppe sequences). Let Y ∈ K∗.
1. If F → E → B is a fibration, the following sequence is a long exact

sequence of sets (i ≥ 0), groups (i ≥ 1), and abelian groups (i ≥ 2).

· · · → [Y ,ΩiF ]0 → [Y ,ΩiE]0 → [Y ,ΩiB]0 →
· · · → [Y ,ΩB]0 → [Y ,F ]0 → [Y ,E]0 → [Y ,B]0

where ΩiZ denotes the iterated loop space

Ω(Ω(· · · (ΩZ) · · · ).
2. If (X,A) is an cofibration, the following sequence is a long exact se-

quence of sets (i ≥ 0), groups (i ≥ 1), and abelian groups (i ≥ 2).

· · · → [Si(X/A), Y ]0 → [SiX, Y ]0 → [SiA, Y ]0 →
· · · → [SA, Y ]0 → [X/A, Y ]0 → [X, Y ]0 → [A, Y ]0

This theorem is used as the basic tool for constructing exact sequences
in algebraic topology.

6.13. Homotopy groups

We now define the homotopy groups of a based space.

Definition 6.43. Suppose that X is a space with base point x0. Then the
nth homotopy group of X based at x0 is the group (set if n = 0, abelian
group if n ≥ 2)

πn(X, x0) = [Sn, X]0.

(We will usually only consider X ∈ K∗.)

Notice that

πn(X, x0) = [Sn, X]0 = [Sk ∧ Sn−k, X]0 = πn−k(Ωk(X)).(6.2)

In particular,
πnX = π1(Ωn−1X).
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There are other ways of looking at homotopy groups which are useful.
For example, to get a hold of the group structure for writing down a proof,
use πn(X, x0) = [(In, ∂In), (X, x0)]. For the proof of the exact sequence of
a pair (coming later) use πn(X, x0) = [(Dn, Sn−1), (X, x0)]. For finding a
geometric interpretation of the boundary map in the homotopy long exact
sequence of a fibration given below, use

πn(X, x0) = [(Sn−1 × I, (Sn−1 × ∂I) ∪ (∗ × I)), (X, x0)].

A useful observation is that the set π0(X, x0) is in bijective correspon-
dence with the path components of X. A based map f : S0 = {±1} → X
corresponds to the path component of f(−1). In general π0 is just a based
set, unless X is an H-space, e.g. a loop space or a topological group.

Also useful is the fact that [X, Y ]0 = π0(Map(X, Y )0), the set of path
components of the function space Map(X, Y )0. In particular, Equation (6.2)
shows that πn(X, x0) is the set of path components of the n-fold loop space
of X.

Homotopy groups are the most fundamental invariant of algebraic topol-
ogy. For example, we will see below that a CW-complex is contractible if
and only if all its homotopy groups vanish. More generally we will see that
a map f : X → Y is a homotopy equivalence if and only if it induces an
isomorphism on all homotopy groups. Finally, the homotopy type of a CW-
complex X is determined by the homotopy groups of X together with a
cohomological recipe (the k-invariants) for assembling these groups. (The
homotopy groups by themselves do not usually determine the homotopy
type of a space.)

Exercise 98. Show that πn(X × Y ) = πn(X)⊕ πn(Y ).

As an application of the Puppe sequences (Theorem 6.42) we imme-
diately get the extremely useful long exact sequence of homotopy groups
associated to any fibration.

Corollary 6.44 (long exact sequence of a fibration). Let F ↪→ E → B be
a fibration. Then the sequence

· · · → πnF → πnE → πnB → πn−1F → πn−1E → · · ·
→ π1F → π1E → π1B → π0F → π0E → π0B

is exact.

In Corollary 6.44, one must be careful with exactness at the right end
of this sequence since π1F , π1E, and π1B are non-abelian groups and π0F ,
π0E, and π0B are merely sets.

Taking F discrete in Corollary 6.44 and using the fact that covering
spaces are fibrations one concludes the following important theorem.
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Theorem 6.45. Let X̃ → X be a connected covering space of a connected
space X. Then the induced map

πn(X̃)→ πn(X)

is injective if n = 1, and an isomorphism if n > 1.

Exercise 99. Give a covering space proof of Theorem 6.45.

6.14. Examples of fibrations

Many examples of fibrations and fiber bundles arise naturally in mathemat-
ics. Getting a feel for this material requires getting one’s hands dirty. For
that reason many facts are left as exercises. We will use the following theo-
rem from equivariant topology to conclude that certain maps are fibrations.
This is a special case of Theorem 4.5.

Theorem 6.46 (Gleason). Let G be a compact Lie group acting freely on
a compact manifold X. Then

X → X/G

is a principal fiber bundle with fiber G.

6.14.1. Hopf fibrations. The first class of examples we give are the fa-
mous Hopf fibrations. These were invented by Hopf to prove that there are
non–nullhomotopic maps Sn → Sm when n > m.

There are four Hopf fibrations (these are fiber bundles):

S0 ↪→ S1 → S1

S1 ↪→ S3 → S2

S3 ↪→ S7 → S4

and
S7 ↪→ S15 → S8.

These are constructed by looking at the various division algebras over R.
Let K = R,C,H, or O (the real numbers, complex numbers, quater-

nions, and octonions). Each of these has a norm N : K → R+ so that

N(xy) = N(x)N(y)

and N(x) > 0 for x �= 0.
More precisely,

1. If K = R, then N(x) = |x| =
√

xx where x = x,

2. If K = C, then N(x) =
√

xx where a + ib = a− ib,

3. If K = H, then N(x) =
√

xx, where a + ib + jc + kd = a−ib−jc−kd,
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4. The octonions are defined to be O = H ⊕ H. The conjugation is
defined by the rule: if p = (a, b), then p = (a,−b). Multiplication is
given by the rule

(a, b)(c, d) = (ac− db, bc + da)

and the norm is defined by

N(p) =
√

pp.

Let EK = {(x, y) ∈ K ⊕ K|N(x)2 + N(y)2 = 1}. Let GK = {x ∈
K|N(x) = 1}.

Exercise 100. GK is a compact Lie group homeomorphic to Sr for r =
0, 1, 3. For K = O, GK is homeomorphic to S7, but it is not a group;
associativity fails.

Let GK act on EK by g · (x, y) = (gx, gy) (Note N(gx)2 + N(gy)2 =
N(x)2 + N(y)2 if N(g) = 1.)

This action is free. This is easy to show for K = R,C, or H, since
K is associative, hence if g(x, y) = (x, y), one of x or y is non-zero (since
N(x) and N(y) are not both zero) and so if x �= 0, gx = x implies that
1 = xx−1 = (gx)x−1 = g(xx−1) = g. This argument does not work for
K = O since GK is not a group; in this case one defines an equivalence
relation on EK by (x, y) ∼ (gx, gy) for g ∈ GK . The resulting quotient map
EK → Ek/ ∼ is a fiber bundle.

It is also easy to see that EK consists of the unit vectors in the corre-
sponding Rn and so EK = S2r+1 for r = 0, 1, 3, 7. Moreover GK

∼= Sr and
so the fiber bundle GK ↪→ EK → EK/GK can be rewritten

Sr ↪→ S2r+1 → Y = S2r+1/Sr

Exercise 101. Prove that Y is homeomorphic to the (r+1)-sphere Sr+1 in
the 4 cases. In fact, prove that the quotient map S2r+1 → Y can be written
in the form f : S2r+1 → Sr+1 where

f(z1, z2) = (2z1z2, N(z1)2 −N(z2)2).

Using these fibrations and the long exact sequence of a fibration (Corol-
lary 6.44) one obtains exact sequences

· · · → πnS1 → πnS3 → πnS2 → πn−1S
1 → · · ·

· · · → πnS3 → πnS7 → πnS4 → πn−1S
3 → · · ·

· · · → πnS7 → πnS15 → πnS8 → πn−1S
7 → · · ·

Since πnS1 = 0 for n > 1 (the universal cover of S1 is contractible and
so this follows from Theorem 6.45), it follows from the first sequence that
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πnS3 = πnS2 for n > 2. The Hopf degree Theorem (Corollary 6.67 and a
project for Chapter 3) implies that πnSn = Z. In particular,

π3S
2 = Z.

This is our second non-trivial calculation of πmSn (the first being πnSn = Z).
The quickest way to to obtain information from the other sequences is to

use the cellular approximation theorem. This is an analogue of the simplicial
approximation theorem. Its proof is one of the projects for Chapter 1.

Theorem 6.47 (cellular approximation theorem). Let (X, A) and (Y, B) be
relative CW-complexes, and let f : (X, A) → (Y, B) be a continuous map.
Then f is homotopic rel A to a cellular map.

Applying this theorem with (X, A) = (Sn, x0) and (Y, B) = (Sm, y0) one
concludes that

πnSm = 0 if n < m.

Returning to the other exact sequences, it follows from the cellular ap-
proximation theorem that πnS4 = πn−1S

3 for n ≤ 6 (since πn(S7) = 0 for
n ≤ 6), and that πnS8 = πn−1S

7 for n ≤ 14. We will eventually be able to
say more.

6.14.2. Projective spaces. The Hopf fibrations can be generalized by
taking GK acting on Kn for n > 2 at least for K = R,C, and H.

For K = R, GK = Z/2 acts on Sn with quotient real projective space
RPn. The quotient map Sn → RPn is a covering space, and in particular
a fibration.

Let S1 act on

S2n−1 = {(z1, . . . , zn) ∈ Cn | Σ|zi|2 = 1}
by

t(z1, · · · , zn) = (tz1, · · · , tzn)
if t ∈ S1 = {z ∈ C | |z| = 1}.
Exercise 102. Prove that S1 acts freely.

The orbit space is denoted by CPn−1 and called complex projective space.
The projection S2n−1 → CPn−1 is a fibration with fiber S1. (Can you
prove directly that this is a fiber bundle?) In fact, if one uses the map
p : S2n−1 → CPn−1 to adjoin a 2n-cell, one obtains CPn. Thus complex
projective space is a CW-complex.

Notice that CPn is a subcomplex of CPn+1, and in fact CPn+1 is ob-
tained from CPn by adding a single 2n+2-cell. One defines infinite complex
projective space CP∞ to be the union of the CPn, with the CW-topology.
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Exercise 103. Using the long exact sequence for a fibration, show that
CP∞ is an Eilenberg–MacLane space of type K(Z, 2), i.e. a CW-complex
with π2 the only non-zero homotopy group and π2

∼= Z.

Similarly, there is a fibration

S3 ↪→ S4n−1 → HPn−1

using quaternions in the previous construction. The space HPn−1 is called
quaternionic projective space.

Exercise 104.

1. Calculate the cellular chain complexes for CP k and HP k.
2. Compute the ring structure of H∗(CP k;Z) and H∗(HP k;Z) using

Poincaré duality.
3. Examine whether OP k can be defined this way, for k > 1.
4. Show these reduce to Hopf fibrations for k = 1.

6.14.3. More general homogeneous spaces and fibrations.

Definition 6.48.

1. The Stiefel manifold Vk(Rn) is the space of orthonormal k-frames in
Rn:

Vk(Rn) = {(v1, v2, . . . , vk) ∈ (Rn)k | vi · vj = δij}
given the topology as a subspace of (Rn)k = Rnk.

2. The Grassmann manifold or grassmannian Gk(Rn) is the space of k-
dimensional subspaces (a.k.a. k-planes) in Rn. It is given the quotient
topology using the surjection Vk(Rn)→ Gk(Rn) taking a k-frame to
the k-plane it spans.

Let G be a compact Lie group. Let H ⊂ G be a closed subgroup (and
hence a Lie group itself). The quotient G/H is called a homogeneous space.
The (group) quotient map G → G/H is a principal H-bundle since H acts
freely on G by right translation. If H has a closed subgroup K, then H acts
on the homogeneous space H/K. Changing the fiber of the above bundle
results in a fiber bundle G/K → G/H with fiber H/K.

For example, if G = O(n) and H = O(k)×O(n− k) with H ↪→ G via

(A, B) �→
(

A 0
0 B

)
,

let K ⊂ O(n) be O(n− k), with

A �→
(

I 0
0 A

)
.
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Exercise 105. Identify G/H with the grassmannian and G/K with the
Stiefel manifold. Conclude that the map taking a frame to the plane it
spans defines a principal O(k) bundle Vk(Rn)→ Gk(Rn).

Let

γk(Rn) = {(p, V ) ∈ Rn ×Gk(Rn) | p is a point in the k-plane V }.
There is a natural map γk(Rn)→ Gk(Rn) given by projection on the second
coordinate. The fiber bundle so defined is a vector bundle with fiber Rk (a
k-plane bundle)

Rk ↪→ γk(Rn)→ Gk(Rn).
It is called the canonical (or tautological) vector bundle over the grassman-
nian.

Exercise 106. Identify the canonical bundle with the bundle obtained from
the principal O(k) bundle Vk(Rn)→ Gk(Rn) by changing the fiber to Rk.

Exercise 107. Show there are fibrations

O(n− k) ↪→ O(n)→ Vk(Rn)

O(n− 1) ↪→ O(n)→ Sn−1

taking a matrix to its last k columns. Deduce that

πi(O(n− 1)) ∼= πi(O(n)) for i < n− 2,(6.3)

and
πi(Vk(Rn)) = 0 for i < n− k − 1.

The isomorphism of Equation (6.3) is an example of “stability” in alge-
braic topology. In this case it leads to the following construction. Consider
the infinite orthogonal group

O = lim
n→∞

O(n) =
∞
∪

n=1
O(n),

where O(n) ⊂ O(n + 1) is given by the continuous monomorphism

A→
(

A 0
0 1

)
.

Topologize O as the expanding union of the O(n). Then any compact
subset of O is contained in O(n) for some n, hence πiO = lim

n→∞
πi(O(n)) =

πi(O(n)) for any n > i + 2.
A famous theorem of Bott says:

Theorem 6.49 (Bott periodicity).

πkO ∼= πk+8O for k ∈ Z+.

Moreover the homotopy groups of O are computed to be
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k (mod 8) 0 1 2 3 4 5 6 7

πkO Z/2 Z/2 0 Z 0 0 0 Z

An element of πkO is given by an element of πk(O(n)), for some n, which
by clutching (see Section 4.3.3) corresponds to a bundle over Sk+1 with
structure group O(n). (Alternatively, one may use that πk+1(BO(n)) ∼=
πk(O(n)) using the long exact sequence of homotopy groups of the fibration
O(n) ↪→ EO(n) → BO(n)). The generators of the first eight homotopy
groups of O are given by Hopf bundles.

Similarly one can consider stable Stiefel manifolds and stable grassma-
nians. Let Vk(R∞) = lim

n→∞
Vk(Rn) and Gk(R∞) = lim

n→∞
Gk(Rn). Then

πi(Vk(R∞)) = lim
n→∞

πi(Vk(Rn)) and πi(Gk(R∞)) = lim
n→∞

πi(Gk(Rn)). In

particular πi(Vk(R∞)) = 0.
A project for Chapter 4 was to show that for every topological group G,

there is a principal G-bundle EG→ BG where EG is contractible.
This bundle classifies principal G-bundles in the sense that given a prin-

cipal G-bundle p : G ↪→ E → B over a CW-complex B (or more generally a
paracompact space), there is a map of principal G-bundles

E EG

B BG
❄

p

✲f̃

❄
✲

f

and that the homotopy class [f ] ∈ [B, BG] is uniquely determined. It follows
that the (weak) homotopy type of BG is uniquely determined.

Corollary 6.50. The infinite grassmannian Gk(R∞) is a model for BO(k).
The principal O(k) bundle

O(k) ↪→ Vk(R∞)→ Gk(R∞)

is universal and classifies principal O(k)-bundles. The canonical bundle

Rk ↪→ γk(R∞)→ Gk(R∞)

classifies Rk-vector bundles with structure group O(k) (i.e. Rk-vector bun-
dles equipped with metric on each fiber which varies continuously from fiber
to fiber).

The fact that the grassmannian classifies orthogonal vector bundles
makes sense from a geometric point of view. If M ⊂ Rn is a k-dimensional
smooth submanifold, then for any point p ∈ M , the tangent space TpM
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defines a k-plane in Rn, and hence a point in Gk(Rn). Likewise a tangent
vector determines a point in the canonical bundle γk(Rn). Thus there is a
bundle map

TM γk(Rn)

M Gk(Rn)
❄

p

✲f̃

❄
✲

f

Moreover, Gk(R∞) is also a model for BGLk(R) and hence is a clas-
sifying space for k-plane bundles over CW-complexes. This follows either
by redoing the above discussion, replacing k-frames by sets of k-linearly
independent vectors, or by using the fact that O(k) ↪→ GLk(R) is a ho-
motopy equivalence, with the homotopy inverse map being given by the
Gram-Schmidt process.

Similar statements apply in the complex setting to unitary groups U(n).
Let

Gk(Cn) = complex k-planes in Cn

Gk(Cn) = U(n)/(U(k)× U(n− k)), the complex grassmanian

Vk(Cn) = U(n)/U(n− k), the unitary Stiefel manifold.

There are principal fiber bundles

U(n− k) ↪→ U(n)→ Vk(Cn)

and
U(k) ↪→ Vk(Cn)→ Gk(Cn).

Moreover, V1(Cn) ∼= S2n−1, therefore

πk(U(n)) ∼= πk(U(n− 1)) if k < 2n− 2

and so letting
U = lim

n→∞
U(n),

we conclude that

πkU = πk(U(n)) for n > 1 +
k

2
.

Bott periodicity holds for the unitary group; the precise statement is the
following.
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Theorem 6.51 (Bott periodicity).

πkU ∼= πk+2U for k ∈ Z+.

Moreover,

πkU =

{
Z if k is odd, and
0 if k is even.

Exercise 108. Prove that π1U = Z and π2U = 0.

Taking determinants give fibrations SO(n) ↪→ O(n) det−−→ {±1} and
SU(n) ↪→ U(n) det−−→ S1. In particular, SO(n) is the identity path–component
of O(n), so πk(SO(n)) = πk(O(n)) for k ≥ 1. Similarly, since πk(S1) = 0
for k > 1, π1(SU(n)) = 0 and πkSU(n) = πk(U(n)) for k > 1.

Exercise 109. Prove that SO(2) = U(1) = S1, SO(3) ∼= RP 3, SU(2) ∼=
S3, and that the map p : S3 × S3 → SO(4) given by (a, b) �→ (v �→ avb̄)
where a, b ∈ S3 ⊂ H and v ∈ H ∼= R4 is a 2-fold covering map.

Exercise 110. Using Exercise 109 and the facts:

1. πnSn = Z (Hopf degree Theorem).

2. πkS
n = 0 for k < n (Hurewicz theorem).

3. πkS
n ∼= πk+1S

n+1 for k < 2n− 1 (Freudenthal suspension theorem).

4. There is a covering Z ↪→ R→ S1.

5. πnSn−1 = Z/2 for n > 3 (this theorem is due to V. Rohlin and G.
Whitehead; see Corollary 9.27).

Compute as many homotopy groups of Sn’s, O(n), Grassmann manifolds,
Stiefel manifolds, etc. as you can.

6.15. Relative homotopy groups

Let (X, A) be a pair, with base point x0 ∈ A ⊂ X. Let p = (1, 0, · · · , 0) ∈
Sn−1 ⊂ Dn.

Definition 6.52. The relative homotopy group (set if n = 1) of the pair
(X, A) is

πn(X, A, x0) = [Dn, Sn−1, p;X, A, x0],

the set of based homotopy classes of base point preserving maps from the
pair (Dn, Sn−1) to (X, A). This is a functor from pairs of spaces to sets
(n = 1), groups (n = 2), and abelian groups (n > 2).

Thus, representatives for πn(X, A, x0) are maps f : Dn → X such that
f(Sn−1) ⊂ A, f(p) = x0 and f is equivalent to g if there exists a homotopy
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F : Dn× I → X so that for each t ∈ I, F (−, t) is base point preserving and
takes Sn−1 into A, and F (−, 0) = f, F (−, 1) = g.

(Technical note: associativity is easier to see if instead one takes

πn(X, A, x0) = [Dn, Sn−1, P ;X, A, x0]

where P is one-half of a great circle, running from p to −p, e.g.

P = {(cos θ, sin θ, 0, · · · , 0) | θ ∈ [0, π]}.
This corresponds to the previous definition since the reduced cone on the
sphere is the disk.)

Theorem 6.53 (long exact sequence in homotopy of a pair).The homotopy
set πn(X, A) is a group for n ≥ 2, and is abelian for n ≥ 3. Moreover, there
is a long exact sequence

· · · → πnA→ πnX → πn(X, A)→ πn−1A→ · · · → π1(X, A)→ π0A→ π0X.

Proof. The proof that πn(X, A) is a group is a standard exercise, with
multiplication based on the idea of the following picture.

ν f
A

∨
g

Dn Dn ∨Dn X

Exercise 111. Concoct an argument from this picture and use it to figure
out why π1(X, A) is not a group. Also use it to prove that the long exact
sequence is exact.

Lemma 6.54. Let f : E → B be a fibration with fiber F . Let A ⊂ B be a
subspace, and let G = f−1(A), so that F ↪→ G

f−→ A is a fibration. Then
f induces isomorphims f∗ : πk(E, G) → πk(B, A) for all k. In particular,
taking A = {b0} one obtains the commuting ladder

· · · πkF πkE πk(E, F ) πk−1(F ) · · ·

· · · πkF πkE πk(B) πk−1(F ) · · ·

✲ ✲

❄
Id

✲

❄
Id

✲

❄
f∗

✲

❄
Id

✲ ✲ ✲ ✲ ✲
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with all vertical maps isomorphisms, taking the long exact sequence of the
pair (E, F ) to the long exact sequence in homotopy for the fibration F ↪→
E → B.

Proof. This is a straightforward application of the homotopy lifting prop-
erty. Suppose that h0 : (Dk, Sk−1) → (B, A) is a map. Viewed as a
map Dk → B it is nullhomotopic, i.e. homotopic to the constant map
cb0 = h1 : Dk → B. Let H be a homotopy, and let h̃1 : Dk → G ⊂ E be
the constant map at the base point of G. Since f ◦ h̃1 = h1 = H(−, 1), the
homotopy lifting property implies that there is a lift H̃ : Dk × I → E with
f ◦ H̃(−, 0) = h0. This proves that f∗ : πk(E, G) → πk(B, A) is surjective.
A similar argument shows that f∗ : πk(E, G)→ πk(B, A) is injective.

The only square in the diagram for which commutativity is not obvious
is

πk(E, F ) πk−1(F )

πk(B) πk−1(F )

✲

❄
f∗

❄
Id

✲

(6.4)

We leave this as an exercise.

Exercise 112. Prove that the diagram (6.4) commutes. You will find the
constructions in the proof of Theorem 6.39 useful. Notice that the com-
mutativity of this diagram and the fact that f∗ is an isomorphism gives an
alternative definition of the connecting homomorphism πk(B) → πk−1(F )
in the long exact sequence of the fibration F ↪→ E → B.

An alternative and useful perspective on Theorem 6.53 is obtained by
replacing a pair by a fibration as follows.

Turn A ↪→ X into a fibration, with A′ replacing A and L(X, A) the fiber.
Using the construction of Section 6.6 we see that

L(X, A) = {(a, α) | α : I → X, α(0) = a ∈ A, α(1) = x0}
= Map((I, 0, 1), (X, A, x0)).

This shows that if ΩX ↪→ PX
e−→ X denotes the path space fibration,

then L(X, A) = PX|A = e−1(A). Thus Lemma 6.54 shows that e induces
an isomorphism e∗ : πk(PX, L(X, A)) → πk(X, A) for all k. Since PX
is contractible, using the long exact sequence for the pair (PX, L(X, A))
gives an isomorphism ∂ : πk(PX, L(X, A))

∼=−→ πk−1(L(X, A)). Therefore
the composite

πk−1(L(X, A)) e∗◦∂−1

−−−−→ πk(X, A)
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is an isomorphism which makes the diagram

· · · πk+1X πk(L(X, A)) πkA πkX · · ·

· · · πk+1X πk+1(X, A) πkA πkX · · ·

✲

❄Id

✲ ✲

❄ ❄Id

✲

❄Id

✲

✲ ✲ ✲ ✲ ✲

commute, where the top sequence is the long exact sequence for the fibration
L(X, A) ↪→ A → X and the bottom sequence is the long exact sequence of
the pair (X, A).

Homotopy groups are harder to compute and deal with than homology
groups, essentially because excision fails for relative homotopy groups. In
Chapter 8 we will discuss stable homotopy and generalized homology the-
ories, in which (properly interpreted) excision does hold. Stabilization is a
procedure which looks at a space X only in terms of what homotopy infor-
mation remains in SnX as n gets large. The fiber L(X, A) and cofiber X/A
are stably homotopy equivalent.

6.16. The action of the fundamental group on
homotopy sets

The question which arises naturally when studying based spaces is what is
the difference between the based homotopy classes [X, Y ]0 and the unbased
classes [X, Y ]? Worrying about base points can be a nuisance. It turns out
that for simply connected spaces one need not worry; the based and unbased
homotopy sets are the same. In general, the fundamental group acts on the
based set as we will now explain.

Let X be in K∗, that is, it is a based space with a non-degenerate base
point x0. Suppose Y is a based space.

Definition 6.55. Let f0, f1 : X → Y . Let u : I → Y be a path and suppose
there is a homotopy F : X × I → Y from f0 to f1 so that F (x0, t) = u(t).
Then we say f0 is freely homotopic to f1 along u, and write

f0 �u f1.

Notice that if f0, f1 : (X, x0) → (Y, y0), then u is a loop. Thus a free
homotopy of based maps gives rise to an element of π1(Y, y0).

Lemma 6.56.

1. (Existence) Given a map f0 : X → Y and a path u in Y starting at
f0(x0), then f0 �u f1 for some f1.

2. (Uniqueness) Suppose f0 �u f1, f0 �v f2 and u 1 v (rel ∂I). Then
f1

�
const

f2.
3. (Multiplicativity) f0 �u f1, f1 �v f2 =⇒ f0 �uv f2
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Proof. 1. There exists a free homotopy F : X × I → Y with F (x0, t) =
u(t), F (−, 0) = f0, since (X, x0) is a cofibration:

X × {0} ∪ {x0} × I Y.

X × I
❄

✲f0∪u

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

F

2. Since (I, ∂I), (X, x0) are cofibrations, so is their product (X × I, X ×
∂I ∪ x0 × I) (See Exercise 91) and so the following problem has a solution

X × I × {0} ∪X × {0, 1} × I ∪ {x0} × I × I Y.

X × I × I
❄

✲

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✯

H

In this diagram,

1. X × I × {0} → Y is the map (x, s, 0) �→ f0(x).

2. X × {0} × I → Y is the homotopy of f0 to f1 along u.

3. X × {1} × I → Y is the homotopy of f0 to f2 along v.

4. {x0} × I × I → Y is the path homotopy of u to v.

The situation is represented in the following picture of a cube X× I× I.

therefore f1 1 f2

f1 t
f2

f0 �v f1
u v

f0 �u f1 s

x

f0◦prX
u 1 v

Then H(−,−, 1) is a homotopy of f1 to f2 along a constant path.
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3. This is clear.

In light of Lemma 6.56, we can define an action of π1(Y, y0) on [X, Y ]0
by the following recipe.

For [u] ∈ π1(Y, y0) and [f ] ∈ [X, Y ]0, define [u][f ] to be [f1], where f1 is
any map so that f �

u
f1.

Theorem 6.57. This defines an action of π1(Y, y0) on the based set [X, Y ]0,
and [X, Y ] is the quotient set of [X, Y ]0 by this action if Y is path connected.

Proof. We need to verify that this action is well-defined. It is independent
of the choice of representative of [u] by Lemma 6.56, part 2. Suppose now
[f ] = [g] ∈ [X, Y ]0 and g �

u
g1. Then

f1 �
u−1

f �
const

g �
u

g1

so that f1 and g1 are based homotopic by Lemma 6.56, parts 2 and 3.
This is an action of the group π1(Y, y0) on the set [X, Y ]0 by Lemma

6.56, part 3. Let
Φ : [X, Y ]0 → [X, Y ]

be the forgetful functor. Clearly Φ([u][f ]) = [f ] and if Φ[f0] = Φ[f1], then
there is a u so that [u][f0] = [f1]. Finally Φ is onto by Lemma 6.56, part 3
and the fact that Y is path-connected.

Corollary 6.58. A based map of path connected spaces is null-homotopic
if and only if it is based null-homotopic.

Proof. If c denotes the constant map, then clearly c �
u

c for any u ∈ π1Y .
Thus π1Y fixes the class in [X, Y ]0 containing the constant map.

Corollary 6.59. Let X, Y ∈ K∗. If Y is a path connected and simply-
connected space then the forgetful functor [X, Y ]0 → [X, Y ] is bijective.

6.16.1. Alternative description in terms of covering spaces. Sup-
pose Y is path connected, and X is simply connected. Then covering space
theory says that any map f : (X, x0) → (Y, y0) lifts to a unique map
f̃ : (X, x0) → (Ỹ , ỹ0), where Ỹ denotes the universal cover of Y . Moreover
based homotopic maps lift to based homotopic maps. Thus the function

p∗ : [X, Ỹ ]0 → [X, Y ]0

induced by the cover p : (Ỹ , ỹ0)→ (Y, y0) is a bijection. On the other hand,
since Ỹ is path connected and simply connected, Corollary 6.59 shows that
the function [X, Ỹ ]0 → [X, Ỹ ] induced by the inclusion is a bijection.
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Now π1(Y, y0) can be identified with group of covering transformations
of Ỹ . Thus, π1(Y, y0) acts on [X, Ỹ ] by post composition i.e. α : Ỹ → Ỹ

acts on f : X → Ỹ by α ◦ f . (Note: one must be careful with left and right
actions: by convention π1(Y, y0) acts on Ỹ on the right, so α ◦ f means the
function x �→ f(x) · α.)

A standard exercise in covering space theory shows that if α ∈ π1(Y, y0)
the diagram

[X, Y ]0 [X, Ỹ ]0 [X, Ỹ ]

[X, Y ]0 [X, Ỹ ]0 [X, Ỹ ]
❄

α

✛∼= ✲∼=

❄

α

✛∼= ✲∼=

commutes, where the action on the left is via an α-homotopy, and the action
on the right is the action induced by the covering translation corresponding
to α, and the two left horizontal bijections are induced by the covering
projection. Thus the two notions of action agree.

Since πnY = [Sn, Y ]0, we have the following corollary.

Corollary 6.60. For any space Y , π1(Y, y0) acts on πn(Y, y0) for all n with
quotient [Sn, Y ], the set of free homotopy classes.

One could restrict to simply connected spaces Y and never worry about
the distinction between based and unbased homotopy classes of maps into Y .
This is not practical in general, and so instead one can make a dimension-
by-dimension definition.

Definition 6.61. We say Y is n-simple if π1Y acts trivially on πnY . We
say Y is simple if Y is n-simple for all n.

Thus, simply connected spaces are simple.

Proposition 6.62. If F is n-simple, then the fibration F ↪→ E → B defines
a local coefficient system over B with fiber πnF .

(A good example to think about is the Klein bottle mapping onto the
circle.)

Proof. Theorem 6.12 shows that given any fibration, F ↪→ E → B, there
is a well-defined homomorphism

π1B →
{ Homotopy classes of self-homotopy

equivalences F → F

}
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A homotopy equivalence induces a bijection

[Sn, F ]
∼=−→ [Sn, F ].

But, since we are assuming that F is n-simple, this is the same as an auto-
morphism

πnF → πnF

Thus, we obtain a homomorphism

ρ : π1B → Aut(πn(F )),

i.e. a local coefficient system over B.

Exercise 113. Prove that the action of π1(Y, y0) on itself is just given by
conjugation, so that Y is 1-simple if and only if π1Y is abelian.

Exercise 114. Show that a topological group is simple. (In fact H-spaces
are simple.)

Theorem 6.63. The group π1A acts on πn(X, A), πnX, and πnA for all n.
Moreover, the long exact sequence of the pair

· · · → πnA→ πnX → πn(X, A)→ πn−1A→ · · ·
is π1A-equivariant.

Proof. Let h : (I, 0, 1) → (A, x0, x0) represent u ∈ π1(A, x0). Let f :
(Dn, Sn−1, p)→ (X, A, x0). Then since (Sn−1, p) is an NDR–pair, the prob-
lem

Sn−1 × {0} ∪ {p} × I A

Sn−1 × I

✲
f|Sn−1∪h

❄ �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✸

h

has a solution h. Since (Dn, Sn−1) is a cofibration, the problem

Dn × {0} ∪ Sn−1 × I X

Dn × I

✲f∪h

❄ �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�✯

F

has a solution F . By construction, F (x, 0) = f(x), and also F (−, 1) takes
the triple (Dn, Sn−1, p) to (X, A, x0). Taking u · [f ] = [F (−, 1)] defines
the action of π1(A, x0) on πn(X, A;x0). It follows immediately from the
definitions that the maps in the long exact sequence are π1A-equivariant.
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Definition 6.64. A pair (X, A) is n-simple if π1A acts trivially on πn(X, A)
for all n.

6.17. The Hurewicz and Whitehead Theorems

Perhaps the most important result of homotopy theory is the Hurewicz
Theorem. We will state the general relative version of the Hurewicz theorem
and its consequence, the Whitehead theorem, in this section.

Recall that Dn is oriented as a submanifold of Rn, i.e., the chart Dn ↪→
Rn determines the local orientation at any x ∈ Dn via the excision iso-
morphism Hn(Dn, Dn − {x}) ∼= Hn(Rn,Rn − {x}). This determines the
fundamental class [Dn, Sn−1] ∈ Hn(Dn, Sn−1). The sphere Sn−1 is oriented
as the boundary of Dn, i.e. the fundamental class [Sn−1] ∈ Hn−1(Sn−1) is
defined by [Sn−1] = δ([Dn, Sn−1]) where δ : Hn(Dn, Sn−1)

∼=−→ Hn−1(Sn−1)
is the connecting homomorphism in the long exact sequence for the pair
(Dn, Sn−1).

Definition 6.65. The Hurewicz map ρ : πnX → HnX is defined by

ρ([f ]) = f∗([Sn]),

where f : Sn → X represents an element of πnX, [Sn] ∈ HnSn ∼= Z is the
generator (given by the natural orientation of Sn) and f∗ : HnSn → HnX
the induced map.

There is also a relative Hurewicz map ρ : πn(X, A)→ Hn(X, A) defined
by

ρ([f ]) = f∗([Dn, Sn−1]).
Here [Dn, Sn−1] ∈ Hn(Dn, Sn−1) ∼= Z is the generator given by the natu-
ral orientation, and f∗ : Hn(Dn, Sn−1) → Hn(X, A) is the homomorphism
induced by f : (Dn, Sn−1, ∗)→ (X, A, x0) ∈ πn(X, A;x0).

Since the connecting homomorphism Hn(Dn, Sn−1) ∂−→ Hn−1(Sn−1) takes
[Dn, Sn−1] to [Sn−1], the map of exact sequences

· · · πn(A) πn(X) πn(X, A) πn−1(A) · · ·

· · · Hn(A) Hn(X) Hn(X, A) Hn−1(A) · · ·

✲ ✲

❄
ρ

✲

❄
ρ

✲

❄
ρ

✲

❄
ρ

✲ ✲ ✲ ✲ ✲

commutes.
Let π+

n (X, A) be the quotient of πn(X, A) by the normal subgroup gen-
erated by

{x(α(x))−1|x ∈ πn(X, A), α ∈ π1A}.
(Thus π+

n (X, A) = πn(X, A) if π1A = {1}, or if (X, A) is n-simple.)
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Clearly ρ factors through π+
n (X, A), since f∗([Dn, Sn]) depends only on

the free homotopy class of f . The following theorem is the subject of one of
the projects for this chapter. It says that for simply connected spaces, the
first non-vanishing homotopy and homology groups coincide. The Hurewicz
theorem is the most important result in algebraic topology. We will give a
proof the Hurewicz theorem for simply connected spaces in Chapter 10.

Theorem 6.66 (Hurewicz theorem).

1. Let n > 0. Suppose that X is path-connected. If πk(X, x0) = 0 for all
k < n, then Hk(X) = 0 for all 0 < k < n, and the Hurewicz map

ρ : πnX → HnX

is an isomorphism if n > 1, and a surjection with kernel the commu-
tator subgroup of π1X if n = 1.

2. Let n > 1. Suppose X and A are path-connected. If πk(X, A) = 0 for
all k < n then Hk(X, A) = 0 for all k < n, and

ρ : π+
n (X, A)→ Hn(X, A)

is an isomorphism. In particular ρ : πn(X, A) → Hn(X, A) is an
epimorphism.

Corollary 6.67 (Hopf degree theorem). The Hurewicz map ρ : πnSn →
HnSn is an isomorphism. Hence a degree zero map f : Sn → Sn is null-
homotopic.

Although we have stated this as a corollary of the Hurewicz theorem,
it can be proven directly using only the (easy) simplicial approximation
theorem. (The Hopf degree theorem was covered as a project in Chapter 5.)

Definition 6.68.

1. A space X is called n-connected if πkX = 0 for k ≤ n. (Thus “simply
connected” is synonymous with 1-connected).

2. A pair (X, A) is called n-connected if πk(X, A) = 0 for k ≤ n.
3. A map f : X → Y is called n-connected if the pair (Mf , X) is n-

connected, where Mf = mapping cylinder of f .

Using the long exact sequence for (Mf , X) and the homotopy equivalence
Mf ∼ Y we see that f is n-connected if and only if

f∗ : πkX → πkY

is an isomorphism for k < n and an epimorphism for k = n. Replacing the
map f : X → Y by a fibration and using the long exact sequence for the
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homotopy groups of a fibration shows that f is n-connected if and only if
the homotopy fiber of f is (n− 1)-connected.

Corollary 6.69 (Whitehead theorem).

1. If f : X → Y is n-connected, then f∗ : HqX → HqY is an isomor-
phism for all q < n and an epimorphism for q = n.

2. If X, Y are 1-connected, and f : X → Y is a map such that

f∗ : HqX → HqY

is an isomorphism for all q < n and an epimorphism for q = n. Then
f is n-connected.

3. If X, Y are 1-connected spaces, f : X → Y a map inducing an isomor-
phism on Z-homology, then f induces isomorphisms f∗ : πkX

∼=−→ πkY
for all k.

Exercise 115. Prove Corollary 6.69.

A map f : X → Y inducing an isomorphism of πkX → πkY for all k
is called a weak homotopy equivalence. Thus a map inducing a homology
isomorphism between simply connected spaces is a weak homotopy equiva-
lence. Conversely a weak homotopy equivalence between two spaces gives a
homology isomorphism.

We will see later (Theorem 7.34) that if X, Y are CW-complexes, then
f : X → Y is a weak homotopy equivalence if and only if f is a homotopy
equivalence. As a consequence,

Corollary 6.70. A continuous map f : X → Y between simply connected
CW-complexes inducing an isomorphism on all Z-homology groups is a ho-
motopy equivalence.

This corollary does not imply that if X, Y are two simply connected
spaces with the same homology, then they are homotopy equivalent; one
needs a map inducing the homology equivalence.

For example, X = S4 ∨ (S2 × S2) and Y = CP 2 ∨CP 2 are simply con-
nected spaces with the same homology. They are not homotopy equivalent
because their cohomology rings are different. In particular, there does not
exist a continuous map from X to Y inducing isomorphisms on homology.

The Whitehead theorem for non-simply connected spaces involves ho-
mology with local coefficients: If f : X → Y is a map, let f̃ : X̃ → Ỹ
be the corresponding lift to universal covers. Recall from Shapiro’s lemma
(Exercise 75) that

Hk(X̃;Z) ∼= Hk(X,Z[π1X]) for all k
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and
πkX̃ ∼= πkX for k > 1

(and similarly for Y ).
We obtain (with π = π1X ∼= π1Y ):

Theorem 6.71. If f : X → Y induces an isomorphism f∗ : π1X → π1Y ,
then f is n-connected if and only if it induces isomorphisms

Hk(X;Z[π])→ Hk(Y ;Z[π])

for k < n and an epimorphism

Hn(X;Z[π])→ Hn(Y ;Z[π])
In particular, f is a weak homotopy equivalence (homotopy equivalence if
X, Y are CW-complexes) if only if f∗ : Hk(X;Aρ) → Hk(Y ;Aρ) is an iso-
morphism for all local coefficient systems ρ : π → Aut(A).

Thus, in the presence of a map f : X → Y , homotopy equivalences can
be detected by homology.

6.18. Projects for Chapter 6

6.18.1. The Hurewicz theorem. The statement is given in Theorem
6.66. A reference is §IV.4-IV.7 in [43]. Another possibility is to give a
spectral sequence proof. Chapter 10 contains a spectral sequence proof the
Hurewicz theorem.

6.18.2. The Freudenthal suspension theorem. The statement is given
in Theorem 8.7. A good reference for the proof is §VII.6-VII.7 in [43]. You
can find a spectral sequence proof in Section 10.3.


