

Problèmes Corrigés

2018-2019

My Ismail Mamouni

http://myismail.net

Simulation DS N°4

Fonctions Réelles-Intégration

22 Janvier 2019

Durée: 1 heure

Calculatrices Interdites

Le plan est rapporté à un repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j})$.

Partie A - Étude d'une fonction

La fonction f est définie sur \mathbb{R} par $f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$ et Γ est sa courbe représentative dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

- (1) Étudier la parité de f.
- (2) Montrer que pour tout x appartenant à \mathbb{R} , -1 < f(x) < 1.
- (3) Quelles sont les limites de f en $-\infty$ et $+\infty$?
- (4) Montrer que f est dérivable sur \mathbb{R} , puis établir que $f'(x) = 1 f(x)^2$. Établir les variations de f et dresser son tableau de variations; en déduire le signe de f(x) sur \mathbb{R} .
- (5) Le réel α étant un nombre appartenant à]-1; 1[, montrer que l'équation $f(x)=\alpha$ admet une solution unique x_0 . Exprimer alors x_0 en fonction de α .

Partie B - Tangentes à la courbe

- (1) Déterminer une équation de la tangente Δ_2 à Γ au point A d'ordonnée $\frac{1}{2}$.
- (2) Montrer que le point B de la courbe Γ , d'ordonnée positive, où le coefficient directeur de la tangente est égal à $\frac{1}{2}$ a pour coordonnées :

$$\left(\ln\left(1+\sqrt{2}\right) \; ; \; \frac{1}{\sqrt{2}}\right).$$

Partie C - Calcul d'intégrales

- (1) Calculer $\int_0^1 [f(x)]^2 dx$.
- (2) Montrer que $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$; en déduire une primitive de f.
- (3) (a) Montrer que sur $[0, +\infty[$ la courbe Γ est située sous la droite d'équation y=x.
 - (b) Calculer l'aire (en unité d'aire) de la surface comprise entre, la droite d'équation y = x et les droites d'équations x = 0 et x = 1.
- (3) En utilisant une intégration par parties, montrer que :

$$\int_0^1 x \left(1 - [f(x)]^2 \right) dx = \frac{e^2 - 1}{e^2 + 1} - \ln \left(\frac{e^2 + 1}{2e} \right).$$

En déduire $\int_0^1 x[f(x)]^2 dx$.

Problèmes Corrigés

2018-2019

My Ismail Mamouni

http://myismail.net

Corrigé

Le plan est rapporté à un repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j})$.

Partie A - Étude d'une fonction

La fonction f est définie sur \mathbb{R} par $f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$ et Γ est sa courbe représentative dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

(1) Étudier la parité de f.

Pour tout $x \in \mathbb{R}$,

$$f(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1} = \frac{(e^{-2x} - 1)e^{2x}}{(e^{-2x} + 1)e^{2x}} = \frac{1 - e^{2x}}{1 + e^{2x}} = -f(x)$$

donc f est impaire.

(2) Montrer que pour tout x appartenant à \mathbb{R} , -1 < f(x) < 1.

Soit $x \in \mathbb{R}$.

D'une part.

$$f(x) = \frac{e^{2x} + 1 - 2}{e^{2x} + 1} = 1 - \frac{2}{e^{2x} + 1}$$

donc f(x) < 1 (puisque $\frac{2}{e^{2x} + 1} > 0$), et d'autre part,

$$f(x) = \frac{-1 - e^{2x} + 2e^{2x}}{e^{2x} + 1} = -1 + \frac{2e^{2x}}{e^{2x} + 1}$$

donc f(x) > -1 (puisque $\frac{2e^{2x}}{e^{2x} + 1} > 0$).

(3) Quelles sont les limites de f en $-\infty$ et $+\infty$?

quelles sont les limites de
$$f$$
 en $-\infty$ et $+\infty$?
$$\left\{\begin{array}{ll} \lim\limits_{y\to+\infty}\frac{y-1}{y+1} &=& 1\\ \lim\limits_{x\to+\infty}\mathrm{e}^{2x} &=& +\infty \end{array}\right\} \text{ donc par composition de limites}: \lim\limits_{x\to+\infty}f(x)=1.$$

Par imparité, on a alors $\lim f(x) = -1$.

(4) Montrer que f est dérivable sur \mathbb{R} , puis établir que $f'(x) = 1 - f(x)^2$. Établir les variations de f et dresser son tableau de variations; en déduire le signe de f(x) sur \mathbb{R} .

La fonction f est dérivable sur \mathbb{R} comme quotient défini de fonctions dérivables.

Pour tout $x \in \mathbb{R}$,

$$f'(x) = \frac{2e^{2x}(e^{2x} + 1) - 2e^{2x}(e^{2x} - 1)}{(e^{2x} + 1)^2} = \frac{4e^{2x}}{(e^{2x} + 1)^2}.$$

Or $4e^{2x} = (e^{2x} + 1)^2 - (e^{2x} - 1)^2$ donc

$$f'(x) = \frac{(e^{2x} + 1)^2 - (e^{2x} - 1)^2}{(e^{2x} + 1)^2} = 1 - f(x)^2$$

Puisque f reste strictement comprise entre -1 et 1, on a $f'(x) = 1 - f(x)^2 > 0$ donc f est strictement croissante sur \mathbb{R} .

Puisque f(0) = 0, la fonction f est donc négative sur $]-\infty,0]$ et positive sur $[0,+\infty[$.

Problèmes Corrigés

2018-2019

My Ismail Mamouni

http://myismail.net

(5) Le réel α étant un nombre appartenant à]-1; 1[, montrer que l'équation $f(x)=\alpha$ admet une solution unique x_0 . Exprimer alors x_0 en fonction de α . Soit $x \in \mathbb{R}$ et $\alpha \in]-1$; 1[.

$$f(x) = \alpha \iff \frac{e^{2x} - 1}{e^{2x} + 1} = \alpha$$
$$\iff e^{2x} - 1 = \alpha(e^{2x} + 1)$$
$$\iff (1 - \alpha)e^{2x} = 1 + \alpha$$
$$\iff e^{2x} = \frac{1 + \alpha}{1 - \alpha}$$
$$\iff x = \frac{1}{2}\ln\left(\frac{1 + \alpha}{1 - \alpha}\right)$$

L'équation $f(x) = \alpha$ admet donc une solution unique $x_0 = \frac{1}{2} \ln \left(\frac{1+\alpha}{1-\alpha} \right)$.

Partie B - Tangentes à la courbe

(1) Déterminer une équation de la tangente Δ_2 à Γ au point A d'ordonnée $\frac{1}{2}$. Soit a l'abscisse du point A. On a donc $f(a) = \frac{1}{2}$ et par conséquent, $f'(a) = 1 - f(a)^2 = \frac{3}{4}$. De plus, la partie précédente permet d'écrire $a = \frac{1}{2} \ln(3)$ donc une équation de la tangente Δ_2 est :

$$y = \frac{3}{4} \left(x - \frac{1}{2} \ln(3) \right) + \frac{1}{2}.$$

(2) Montrer que le point B de la courbe Γ , d'ordonnée positive, où le coefficient directeur de la tangente est égal à $\frac{1}{2}$ a pour coordonnées :

$$\left(\ln\left(1+\sqrt{2}\right) \; ; \; \frac{1}{\sqrt{2}}\right).$$

Soit b l'abscisse de B. L'ordonnée de B est donc f(b) et puisque le coefficient directeur de la tangente en B est égal à $\frac{1}{2}$, on a

$$f'(b) = 1 - f(b)^2 = \frac{1}{2},$$

donc $f(b) = \frac{1}{\sqrt{2}}$ puisque l'ordonnée de B est positive. D'après la partie précédente, on a donc

$$b = \frac{1}{2} \ln \left(\frac{1 + \frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}} \right) = \frac{1}{2} \ln \left(\frac{1 + \sqrt{2}}{\sqrt{2} - 1} \right)$$

et comme $(\sqrt{2} - 1)(\sqrt{2} + 1) = 1$, on a

$$b = \frac{1}{2} \ln \left((1 + \sqrt{2})^2 \right) = \ln(1 + \sqrt{2})$$

Problèmes Corrigés

2018-2019

My Ismail Mamouni

http://myismail.net

Partie C - Calcul d'intégrales

(1) Calculer
$$\int_0^1 [f(x)]^2 dx$$
. On a $\int_0^1 (1 - [f(x)]^2) dx = \int_0^1 f'(x) dx = f(1) - f(0)$
donc $\int_0^1 [f(x)]^2 dx = 1 - f(1) = 1 - \frac{e^2 - 1}{e^2 + 1} = \frac{2}{e^2 + 1}$.

(2) Montrer que $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$; en déduire une primitive de f.

Pour tout
$$x \in \mathbb{R}$$
,

$$f(x) = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{(e^{2x} - 1)e^{-x}}{(e^{2x} + 1)e^{-x}} = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

On reconnait en f(x) la forme dérivée $\frac{u'(x)}{u(x)}$: une primitive de f est donc la fonction $x \mapsto \ln(e^x + e^{-x})$.

(3) (a) Montrer que sur $[0, +\infty[$ la courbe Γ est située sous la droite d'équation y=x.

Puisque $f'(t) = 1 - f(t)^2$, on a $1 - f'(t) \ge 0$ donc $f'(t) \le 1$, cela pour tout réel t. La propriété de positivité de l'intégrale donne alors, pour $x \ge 0$:

$$\int_0^x f'(t) dt \le \int_0^x 1 dt, \text{ donc } f(x) \le x.$$

Sur $[0, +\infty[$, la courbe Γ est donc sous la droite d'équation y=x.

(b) Calculer l'aire (en unité d'aire) de la surface comprise entre la courbe Γ , la droite d'équation y = x et les droites d'équations x = 0 et x = 1.

Cette aire est donnée par l'intégrale $\int_0^1 (x - f(x)) dx$ qui se calcule aisément grâce à une primitive de $f: \int_0^1 (x - f(x)) dx = \frac{1}{2} - \ln(e + e^{-1}) + \ln(2)$

(3) En utilisant une intégration par parties, montrer que :

$$\int_0^1 x \left(1 - [f(x)]^2 \right) dx = \frac{e^2 - 1}{e^2 + 1} - \ln \left(\frac{e^2 + 1}{2e} \right).$$

En déduire $\int_0^1 x[f(x)]^2 dx$.

L'intégrale de gauche est : $\int_0^1 x f'(x) dx$.

Les fonctions f et $g: x \mapsto x$ sont de classe \mathscr{C}^1 sur \mathbb{R} et

$$g(x) = x;$$
 $g'(x) = 1$
 $f'(x) = f'(x);$ $f(x) = f(x)$

donc par intégration par parties,

$$\int_0^1 x \left(1 - [f(x)]^2 \right) dx = \int_0^1 x f'(x) dx = f(1) - \int_0^1 f(x) dx.$$

Or
$$\int_0^1 f(x) dx = \ln(e + e^{-1}) - \ln(2)$$
 donc

$$\int_0^1 x \left(1 - [f(x)]^2 \right) dx = \frac{e^2 - 1}{e^2 + 1} - \ln(e + e^{-1}) - \ln(2) = \frac{e^2 - 1}{e^2 + 1} - \ln\left(\frac{e^2 + 1}{2e}\right)$$

