

Problèmes Corrigés

2020-2021

Prof. Mamouni

http://myismail.net

Simulation DS 2 Suites Numériques

Nombres Réels-Ensembles-Applications

Exercice 1

Pour $(x, y) \in (\mathbb{R}_+)^2$, on pose

$$d_1(x, y) = |x - y|$$

et

$$d_2(x,y) = \left| \frac{x}{x+1} - \frac{y}{y+1} \right|$$

1. Prouver que

$$\forall (x,y) \in (\mathbb{R}_+)^2, \ d_2(x,y) = 0 \iff x = y$$

2. Justifier que

$$\forall (x, y, z) \in (\mathbb{R}_+)^3 \ d_2(x, z) \le d_2(x, y) + d_2(y, z)$$

3. Prouver que

$$\forall (x, y) \in (\mathbb{R}_+)^2, \ d_2(x, y) \le d_1(x, y)$$

4. Existe-t-il un réel λ tel que

$$\forall (x,y) \in (\mathbb{R}_+)^2, \ d_1(x,y) \le \lambda d_2(x,y)$$

Exercice 2

Problèmes Corrigés

2020-2021

Prof. Mamouni
http://myismail.net

Problème 1

Soit E un ensemble non vide, pour toute partie A de E, on considère la fonction $\mathbb{1}_A$ définie par :

$$1_A: E \to \{0,1\}
x \mapsto \begin{cases}
1 & \text{si } x \in A \\
0 & \text{si } x \notin A
\end{cases}$$

Cette fonction $\mathbb{1}_A$ est appelée fonction caractéristique de A. On notera dans la suite du problème $\bar{A} = C_E A$ le complémentaire de A dans E.

- 1. Tracer la fonction $\mathbb{1}_A$ dans le cas particulier où $E = \mathbb{R}$ et $A = [-4, -1] \cup [1, 5]$.
- 2. Expliciter les fonctions $\mathbb{1}_E$ et $\mathbb{1}_{\emptyset}$.
- 3. Démontrer les formules suivantes avec A et B des parties de E:
 - (a) $\mathbb{1}_A^2 = \mathbb{1}_A$.
 - (b) $A \subset B \Leftrightarrow \mathbb{1}_A \leq \mathbb{1}_B$.
 - (c) $A = B \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$.
 - (d) $\mathbb{1}_{\bar{A}} = 1 \mathbb{1}_A$.
 - (e) $\mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$.
 - (f) $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B \mathbb{1}_A \mathbb{1}_B$.
 - (g) $\mathbb{1}_{A \setminus B} = \mathbb{1}_A (1 \mathbb{1}_B)$.

On rappelle que deux fonctions sont égales si et seulement si elles coïncident en tous les éléments de E.

- 4. On définit la différence symétrique de deux parties A et B de E par : $A\Delta B = (A \cup B) \setminus (B \cap A)$.
 - (a) Montrer que : $A\Delta B = (A \setminus B) \cup (B \setminus A)$.
 - (b) Préciser $A\Delta E$ et $A\Delta \emptyset$.
 - (c) Vérifier que $A\Delta B = (A \cap \bar{B}) \cup (\bar{A} \cap B)$. Comparer $A\Delta B$ et $\bar{A}\Delta \bar{B}$.
 - (d) Montrer que $\mathbb{1}_{A\Delta B} = (\mathbb{1}_A \mathbb{1}_B)^2$.
 - (e) Soit A, B, C trois sous-ensembles de E, en utilisant la propriété démontrée à la question précédente et les questions 3.(a) et 3.(c), montrer que $(A\Delta B)\Delta C = A\Delta (B\Delta C)$.
- 5. On considère l'application suivante :

$$\begin{array}{ccc} \Gamma: & \mathcal{P}(E) & \to & \mathcal{F}(E, \{0, 1\}) \\ & A & \mapsto & \mathbb{1}_A \end{array}$$

Montrer que Γ est une bijection.

6. Soit F un deuxième ensemble, B une partie de F et $f: E \to F$ une application. Montrer que :

$$1\!\!1_{f^{-1}(B)} = 1\!\!1_B \circ f$$

2020-2021

Prof. Mamouni http://myismail.net

Problème 2

On fixe un réel λ tel que $0 < \lambda \leqslant 2$, et on définit la fonction

$$\begin{array}{cccc} f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \lambda x (1-x) \end{array}.$$

Ici, λ est une constante.

On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 \in \left] 0, \frac{1}{2} \right] \\ \forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n) = \lambda u_n (1 - u_n). \end{cases}$$

Le but de ce problème est d'étudier le comportement de cette suite pour différentes valeurs de λ et u_0 .

Partie 1 - Premier cas : $0 < \lambda \leqslant 1$

On suppose, dans cette partie uniquement, que $0 < \lambda \leq 1$.

- 1. Démontrer que pour tout $n \in \mathbb{N}$, $u_n \in [0, 1]$.
- 2. Étude de la monotonie de $(u_n)_{n\in\mathbb{N}}$.
 - (a) Un exemple : on suppose $\lambda = \frac{3}{4}$. Étudier la monotonie de $(u_n)_{n \in \mathbb{N}}$ dans ce cas.
 - (b) On revient à $0 < \lambda \le 1$. Montrer que le résultat trouvé en 2.(a) se généralise.
- 3. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ .
- 4. (a) Déterminer ℓ dans le cas où $\lambda = \frac{3}{4}$.
 - (b) Montrer que le résultat se généralise à tout $0 < \lambda \le 1$.

Partie 2 - Deuxième cas : $1 < \lambda \leqslant 2$

On note $m = 1 - \frac{1}{\lambda}$ et on suppose que $1 < \lambda \leq 2$.

- 5. (a) Donner le tableau de variation de f sur l'intervalle [0,1]. On rappelle que $\lambda>0$.
 - (b) Montrer que f(m) = m et que $0 < m \le \frac{1}{2}$.
- 6. On suppose pour cette question que $0 < u_0 \le m$.
 - (a) Démontrer alors que pour tout $n \in \mathbb{N}$, $0 \leq u_n \leq m$.
 - (b) En déduire que $(u_n)_{n\in\mathbb{N}}$ est croissante.
 - (c) Démontrer que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite que l'on précisera.
- 7. (Facultatif) On suppose maintenant que $m \leq u_0 \leq \frac{1}{2}$. Démontrer que $(u_n)_{n \in \mathbb{N}}$ converge vers m.

http://myismail.net

Problème 3

Partie I: Quelques questions préliminaires -

1. Montrer que, pour tout $x \in [0, 1]$,

$$\frac{1}{2-x} \le \frac{1}{2} + \frac{x}{2}.$$

2. (a) Justifier que, pour tout réel y > 0,

$$\int_{y}^{y+1} \frac{1}{t} dt = \ln(y+1) - \ln(y).$$

(b) En déduire que, pour tout réel y > 0,

$$\frac{1}{y+1} \le \ln(y+1) - \ln(y).$$

Partie II : étude d'une suite récurrente d'ordre 1 – On définit la suite $(u_n)_{n\geq 0}$ par $u_0=0$ et

$$\forall n \in \mathbb{N} , \quad u_{n+1} = \frac{1 + u_n^2}{2} .$$

- 1. Montrer que la suite $(u_n)_{n>0}$ est croissante.
- 2. Montrer que : $\forall n \in \mathbb{N}, 0 \leq u_n < 1$.

On définit alors la suite $(v_n)_{n\geq 0}$ par : $\forall n\in\mathbb{N}, v_n=1-u_n$.

3. (a) Vérifier que, pour tout entier $k \geq 0$,

$$\frac{1}{v_{k+1}} - \frac{1}{v_k} = \frac{1}{2 - v_k}$$

et en déduire que, pour tout entier $k \geq 0$,

$$\frac{1}{v_{k+1}} - \frac{1}{v_k} \ge \frac{1}{2}. \qquad (\star)$$

(b) En déduire, en sommant l'inégalité (\star) que, pour tout entier $n \geq 1$,

$$\frac{1}{v_n} \ge \frac{n+2}{2}.$$

4. (a) En utilisant la partie I, montrer que, pour tout entier $k \geq 0$,

$$\frac{1}{v_{k+1}} - \frac{1}{v_k} \le \frac{1}{2} + \ln(k+2) - \ln(k+1).$$

(b) En déduire que, pour tout entier $n \geq 1$,

$$\frac{1}{v_n} \le \frac{n+2}{2} + \ln(n+1).$$

- 5. (a) Montrer alors que $nv_n \longrightarrow 2$ quand $n \to +\infty$.
 - (b) En déduire finalement la limite de la suite $(u_n)_{n>0}$.

2020-2021

Prof. Mamouni http://myismail.net

Corrigé

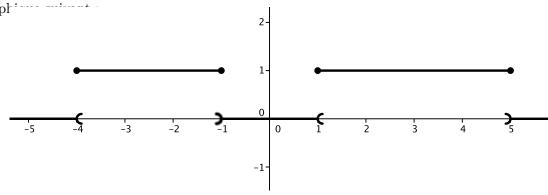
Problème 1

1. Par définition, on a:

$$1_A : \mathbb{R} \to \{0,1\}$$

$$x \mapsto \begin{cases} 1 & \text{si } x \in [-4,-1] \cup [1,5] \\ 0 & \text{sinon} \end{cases}$$

D'où le graph:----



2. Par définition, pour tout $x \in E$, $\mathbb{1}_E(x) = 1$, ainsi :

 $\boxed{\mathbbm{1}_E \text{ est la fonction constante égale à 1}}$

D'autre part, pour tout $x \in E$, $\mathbb{1}_{\emptyset}(x) = 0$:

 $\mathbb{1}_{\emptyset}$ est la fonction constante égale à 0

3. (a) Soit $A \subset E$, la fonction $\mathbbm{1}_A$ ne prend que les valeurs 0 ou 1. Ainsi pour tout $x \in E$, $\mathbbm{1}_A(x)^2 = \mathbbm{1}_A(x)$, ce qui permet de dire que :

 $\mathbb{1}_A^2 = \mathbb{1}_A$

(b) On peut traiter cette questions à l'aide d'un tableau récapitulatif, prenons A et B deux parties de E et xun élément de E :

	$x \in A$	$x \in B$	$\mathbb{1}_A(x)$	$\mathbb{1}_B(x)$
cas 1	oui	oui	1	1
cas 2	oui	non	1	0
cas 3	non	oui	0	1
cas 4	non	non	0	0

On a:

 $A \subset B \Leftrightarrow$ on se trouve dans les cas 1, 3 ou 4 $\Leftrightarrow \mathbb{1}_A \leq \mathbb{1}_B$

$$A \subset B \Leftrightarrow \mathbb{1}_A \leq \mathbb{1}_B$$

Il y a bien entendu d'autres façon de rédiger cette question sans l'aide de ce tableau et en traitant les différents cas possibles.

2020-2021

Prof. Mamouni
http://myismail.net

(c) On utilise la question précédente, soient A et B deux parties de E:

$$A = B \Leftrightarrow A \subset B \text{ et } B \subset A \Leftrightarrow \mathbb{1}_A \leq \mathbb{1}_B \text{ et } \mathbb{1}_B \leq \mathbb{1}_A \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$$

$$A = B \Leftrightarrow \mathbb{1}_A = \mathbb{1}_B$$

(d) Là aussi un tableau résumant les différents cas fait l'affaire. Soient A et B deux parties de E et $x \in E$:

$x \in A$	$x \in \bar{A}$	$\mathbb{1}_A(x)$	$\mathbb{1}_{\bar{A}}(x)$
oui	non	1	0
non	oui	0	1

Il est clair que : $\forall x \in E, \ \mathbb{1}_{\bar{A}}(x) = 1 - \mathbb{1}_{A}(x).$

$$\boxed{\mathbb{1}_{\bar{A}} = 1 - \mathbb{1}_A}$$

(e) On emploie la même méthode avec A et B deux parties de E et $x \in E$:

$x \in A$	$x \in B$	$x \in A \cap B$	$\mathbb{1}_A(x)$	$\mathbb{1}_B(x)$	$\mathbb{1}_A(x) \times \mathbb{1}_B(x)$	$\mathbb{1}_{A\cap B}(x)$
oui	oui	oui	1	1	1	1
oui	non	non	1	0	0	0
non	oui	non	0	1	0	0
non	non	non	0	0	0	0

On constate que : $\forall x \in E, \ \mathbb{1}_A(x)\mathbb{1}_B(x) = \mathbb{1}_{A \cap B}(x)$, ainsi :

$$\mathbb{1}_A \mathbb{1}_B = \mathbb{1}_{A \cap B}$$

(f) Voici le tableau correspondant à la situation avec A et B deux parties de E et $x \in E$:

$x \in A$	$x \in B$	$x \in A \cup B$	$\mathbb{1}_A(x)$	$\mathbb{1}_B(x)$	$\mathbb{1}_A(x) + \mathbb{1}_B(x) - \mathbb{1}_A(x) \times \mathbb{1}_B(x)$	$\mathbb{1}_{A\cup B}(x)$
oui	oui	oui	1	1	1 + 1 - 1 = 1	1
oui	non	oui	1	0	1 + 0 - 0 = 1	1
non	oui	oui	0	1	0+1-0=1	1
non	non	non	0	0	0 + 0 - 0 = 0	0

Ce qui démontre que :

$$1_A + 1_B - 1_A 1_B = 1_{A \cup B}$$

(g) On a vu dans le cours que pour toutes parties X et Y de E, on a $X \setminus Y = X \cap \overline{Y}$. Considérons A et B deux parties de E, on a :

$$\mathbb{1}_{A \setminus B} = \mathbb{1}_{A \cap \bar{B}} = \mathbb{1}_A \mathbb{1}_{\bar{B}} = \mathbb{1}_A (1 - \mathbb{1}_B)$$

Ceci en utilisant les formules démontrées aux questions 3.(d) et 3.(e).

$$\mathbb{1}_{A \setminus B} = \mathbb{1}_A (1 - \mathbb{1}_B)$$

Problèmes Corrigés

2020-2021

Prof. Mamouni http://myismail.net

4. (a) On a:

$$\begin{array}{lll} A\Delta B &=& (A\cup B)\setminus (B\cap A)\\ &=& (A\cup B)\cap (\overline{B}\cap \overline{A})\\ &=& (A\cup B)\cap (\bar{B}\cup \bar{A})\\ &=& (A\cup B)\cap (\bar{B}\cup \bar{A})\\ &=& [A\cap (\bar{B}\cup \bar{A})]\cup [B\cap (\bar{B}\cup \bar{A})] & \text{en distribuant}\\ &=& [(A\cap \bar{B})\cup (A\cap \bar{A})]\cup [(B\cap \bar{B})\cup (B\cap \bar{A})] & \text{or } A\cap \bar{A}=\emptyset \text{ et } B\cap \bar{B}=\emptyset\\ &=& (A\cap \bar{B})\cup (B\cap \bar{A})\\ &=& (A\setminus B)\cup (B\setminus A) \end{array}$$

Ce qui démontre que :

$$\forall (A,B) \in \mathcal{P}(E)^2, \ A\Delta B = (A \setminus B) \cup (B \setminus A)$$

(b) Soit A une partie de E, en utilisant la définition, on a :

$$A\Delta E = (A \cup E) \setminus (A \cap E) = E \setminus A = \bar{A}$$

et:

$$A\Delta\emptyset = (A\cup\emptyset)\setminus (A\cap\emptyset) = A\setminus\emptyset = A$$

$$\forall A \in \mathcal{P}(E), \ A\Delta E = \bar{A} \text{ et } A\Delta \emptyset = A$$

(c) La formule $A\Delta B = (A \cap \bar{B}) \cup (B \cap \bar{A})$ a été démontrée au cours de la question 4.(a). En utilisant cette égalité, on a pour toutes parties A et B de E:

$$\bar{A}\Delta\bar{B} = (\bar{A}\cap\bar{\bar{B}})\cup(\bar{B}\cap\bar{\bar{A}}) = (\bar{A}\cap\bar{B})\cup(\bar{B}\cap\bar{A}) = A\Delta\bar{B}$$

$$\forall (A,B)\in\mathcal{P}(E)^2,\ \bar{A}\Delta\bar{B} = A\Delta\bar{B}$$

(d) On va utiliser les différents résultats de la question 3. :

$$\begin{array}{lll} \mathbb{1}_{A\Delta B} & = & \mathbb{1}_{(A\cup B)\backslash (A\cap B)} & \text{définition de la différence symétrique} \\ & = & (\mathbb{1}_{A\cup B})(1-\mathbb{1}_{A\cap B}) & \text{avec } 3.(g) \\ & = & (\mathbb{1}_A+\mathbb{1}_B-\mathbb{1}_A\mathbb{1}_B)(1-\mathbb{1}_A\mathbb{1}_B) & \text{en utilisant } 3.(e) \text{ et } 3.(f) \\ & = & \mathbb{1}_A+\mathbb{1}_B-\mathbb{1}_A\mathbb{1}_B-\mathbb{1}_A\mathbb{1}_A\mathbb{1}_B-\mathbb{1}_B\mathbb{1}_A\mathbb{1}_B+\mathbb{1}_A\mathbb{1}_B\mathbb{1}_A\mathbb{1}_B & \text{en développant} \\ & = & (\mathbb{1}_A+\mathbb{1}_B)^2 & \text{en utilisant } 3.(a) \end{array}$$

Ce qui démontre que :

$$\forall (A,B) \in \mathcal{P}(E)^2, \ \mathbb{1}_{A\Delta B} = (\mathbb{1}_A - \mathbb{1}_B)^2$$

(e) Soient A, B et C trois parties de E. D'après la question 3.(c) deux ensembles sont égaux si et seulement si leurs fonctions caractéristiques sont égales, il s'agit donc de montrer que $\mathbb{1}_{(A\Delta B)\Delta C} = \mathbb{1}_{A\Delta(B\Delta C)}$. Pour cela, on va bien entendu se servir de la formule démontrée à la question précédente :

$$\mathbf{1}_{A\Delta B\Delta C} = (\mathbf{1}_{(A\Delta B)} - \mathbf{1}_{C})^{2}
= ((\mathbf{1}_{A} - \mathbf{1}_{B})^{2} - \mathbf{1}_{C})^{2}
= (\mathbf{1}_{A}^{2} + \mathbf{1}_{B}^{2} - 2\mathbf{1}_{A}\mathbf{1}_{B} - \mathbf{1}_{C})^{2}
= (\mathbf{1}_{A} + \mathbf{1}_{B} - 2\mathbf{1}_{A}\mathbf{1}_{B} - \mathbf{1}_{C})^{2}
= (\mathbf{1}_{A} + \mathbf{1}_{B} - 2\mathbf{1}_{A}\mathbf{1}_{B} - \mathbf{1}_{C})^{2}
= \mathbf{1}_{A}^{2} + \mathbf{1}_{B}^{2} + 4\mathbf{1}_{A}^{2}\mathbf{1}_{B}^{2} + \mathbf{1}_{C}^{2} + 2\mathbf{1}_{A}\mathbf{1}_{B} - 4\mathbf{1}_{A}\mathbf{1}_{A}\mathbf{1}_{B} - 4\mathbf{1}_{B}\mathbf{1}_{A}\mathbf{1}_{B} - 2\mathbf{1}_{A}\mathbf{1}_{C} - 2\mathbf{1}_{B}\mathbf{1}_{C} + 4\mathbf{1}_{A}\mathbf{1}_{B}\mathbf{1}_{C}
= \mathbf{1}_{A} + \mathbf{1}_{B} + \mathbf{1}_{C} - 2\mathbf{1}_{A}\mathbf{1}_{B} - 2\mathbf{1}_{A}\mathbf{1}_{C} - 2\mathbf{1}_{B}\mathbf{1}_{C} + 4\mathbf{1}_{A}\mathbf{1}_{B}\mathbf{1}_{C}$$

Problèmes Corrigés

2020-2021

Prof. Mamouni
http://myismail.net

D'autre part :

$$\begin{split} \mathbb{1}_{A\Delta(B\Delta C)} &= (\mathbb{1}_A - \mathbb{1}_{B\Delta C})^2 \\ &= \left(\mathbb{1}_A - (\mathbb{1}_B - \mathbb{1}_C)\right)^2 \\ &= (\mathbb{1}_A - \mathbb{1}_B^2 - \mathbb{1}_C^2 + 2\mathbb{1}_B\mathbb{1}_C)^2 \\ &= (\mathbb{1}_A - \mathbb{1}_B - \mathbb{1}_C + 2\mathbb{1}_B\mathbb{1}_C)^2 \\ &= \mathbb{1}_A^2 + \mathbb{1}_B^2 + \mathbb{1}_C^2 + 4\mathbb{1}_B^2\mathbb{1}_C^2 - 2\mathbb{1}_A\mathbb{1}_B - 2\mathbb{1}_A\mathbb{1}_C + 4\mathbb{1}_A\mathbb{1}_B\mathbb{1}_C + 2\mathbb{1}_B\mathbb{1}_C - 4\mathbb{1}_B^2\mathbb{1}_C^2 - 4\mathbb{1}_B\mathbb{1}_C^2 \\ &= \mathbb{1}_A + \mathbb{1}_B + \mathbb{1}_C - 2\mathbb{1}_A\mathbb{1}_B - 2\mathbb{1}_A\mathbb{1}_C - 2\mathbb{1}_B\mathbb{1}_C + 4\mathbb{1}_A\mathbb{1}_B\mathbb{1}_C \end{split}$$

Dans ces calculs, on a utilisé systématiquement que $\mathbb{1}_A^2 = \mathbb{1}_A$, $\mathbb{1}_B^2 = \mathbb{1}_B$ et $\mathbb{1}_C^2 = \mathbb{1}_C$.

On a bien $\mathbb{1}_{(A\Delta B)\Delta C} = \mathbb{1}_{A\Delta(B\Delta C)}$ et par suite :

La différence symétrique est associative

Cette question illustre l'importance de la la fonction caractéristique qui permet de démontrer une propriété sur les ensembles juste par un calcul algébrique.

- 5. Démontrons la surjectivité de Γ puis son injectivité.
 - ▶ Soit $f \in \mathcal{F}(E, \{0, 1\})$, trouvons-lui un antécédent par Γ. On pose $A = f^{-1}(\{1\})$, c'est bien une partie de E et on a pour tout $x \in E$:

$$\Gamma(A)(x) = 1 \Leftrightarrow \mathbb{1}_A(x) = 1 \Leftrightarrow x \in A \Leftrightarrow x \in f^{-1}(\{1\}) \Leftrightarrow f(x) = 1$$

Les assertions soulignées montrent que $\mathbb{1}_A = f$ puisque $\mathbb{1}_A$ et f sont à valeurs dans $\{0,1\}$.

On a trouvé un antécédent à f par Γ , c'est A.

▶ Prenons A et B deux parties de E et supposons que $\Gamma(A) = \Gamma(B)$, c'est-à-dire que $\mathbb{1}_A = \mathbb{1}_B$ et d'après la question 3.(c) cela donne A = B. Ce qui démontre que f est injective.

 Γ est une bijection

- 6. Soit B une partie de F. Soit $x \in f^{-1}(B)$, on a $f(x) \in B$. Ainsi dans ce cas $\mathbb{1}_{f^{-1}(B)}(x) = 1$ et $\mathbb{1}_B \circ f(x) = \mathbb{1}_B(f(x)) = 1$.
 - ▶ Soit $x \notin f^{-1}(B)$, on a $f(x) \notin B$. Ainsi dans ce cas $\mathbb{1}_{f^{-1}(B)}(x) = 0$ et $\mathbb{1}_B \circ f(x) = \mathbb{1}_B(f(x)) = 0$. Dans les deux cas, les fonctions $\mathbb{1}_{f^{-1}(B)}$ et $\mathbb{1}_B \circ f$ coïncident

$$\boxed{\mathbb{1}_{f^{-1}(B)} = \mathbb{1}_B \circ f}$$

Problèmes Corrigés

2020-2021

Prof. Mamouni

http://myismail.net

Problème 2

Partie 1 - Premier cas : $0 < \lambda \leqslant 1$

1. Démontrons par récurrence sur n que pour tout $n \in \mathbb{N}$, $u_n \in [0,1]$.

Initialisation : $u_0 \in]0, 1/2]$ d'après l'énoncé donc $u_0 \in [0, 1]$.

Hérédité : Soit $n \in \mathbb{N}$ tel que $u_n \in [0,1]$. $u_{n+1} = \lambda u_n(1-u_n)$.

$$0 \leqslant u_n \leqslant 1$$
 donc $0 \leqslant 1 - u_n \leqslant 1$

Par produit ce des deux inégalités (les nombres sont tous positifs) :

$$0 \leqslant u_n(1 - u_n) \leqslant 1.$$

De plus $0 < \lambda \le 1$, donc encore par produit :

$$0 \leqslant \lambda u_n (1 - u_n) \leqslant 1.$$

On a donc bien $u_{n+1} \in [0,1]$.

Conclusion : par récurrence, $u_n \in [0,1]$ pour tout $n \in \mathbb{N}$.

- 2. Étude de la monotonie de $(u_n)_{n\in\mathbb{N}}$.
 - (a) On suppose que $\lambda = \frac{3}{4}$. Donc $u_{n+1} = \frac{3}{4}u_n(1-u_n) = \frac{3}{4}u_n \frac{3}{4}(u_n)^2$. Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = \frac{3}{4}u_n - \frac{3}{4}(u_n)^2 - u_n = -\frac{1}{4}u_n - \frac{3}{4}(u_n)^2 \le 0$$

car $u_n \geqslant 0$. Ainsi, la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.

(b) On revient à $0 < \lambda \leq 1$. Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = \lambda u_n (1 - u_n) - u_n$$
$$= (\lambda - 1)u_n - \lambda (u_n)^2.$$

Or $u_n \ge 0$ et $\lambda - 1 \le 0$ donc $(\lambda - 1)u_n \le 0$. et $-\lambda (u_n)^2 \le 0$. Par somme,

$$u_{n+1} - u_n = (\lambda - 1)u_n + (-\lambda(u_n)^2) \le 0.$$

Ainsi, la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

- 3. La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0 donc d'après le théorème de la limite monotone, elle converge vers un réel ℓ .
- 4. (a) Supposons que $\lambda = \frac{3}{4}$.
 - Pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$ donc par passage à la limite $0 \le \ell \le 1$.
 - Pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{3}{4}u_n \frac{3}{4}(u_n)^2$. Or $u_{n+1} \xrightarrow[n \to +\infty]{} \ell$ (cours) et $\frac{3}{4}u_n \frac{3}{4}(u_n)^2 \xrightarrow[n \to +\infty]{} \frac{3}{4}\ell \frac{3}{4}\ell^2$. Donc

$$\ell = \frac{3}{4}\ell - \frac{3}{4}\ell^2.$$

Or.

$$\ell = \frac{3}{4}\ell - \frac{3}{4}\ell^2 \Leftrightarrow \frac{3}{4}\ell^2 + \frac{1}{4}\ell = 0$$
$$\Leftrightarrow 3\ell^2 + \ell = 0$$
$$\Leftrightarrow \ell(3\ell + 1) = 0$$
$$\Leftrightarrow \ell = 0 \text{ ou } \ell = -\frac{1}{3}.$$

Puisque $0 \le \ell \le 1$, on en déduit que $\ell = 0$.

Conclusion:
$$\overline{\lim_{n \to +\infty} u_n = 0 }$$

- (b) Suposons $0 < \lambda \le 1$.
 - Pour tout $n \in \mathbb{N}$, $0 \le u_n \le 1$ donc par passage à la limite $0 \le \ell \le 1$.
 - Pour tout $n \in \mathbb{N}$, $u_{n+1} = \lambda u_n (1 u_n)$. Or $u_{n+1} \xrightarrow[n \to +\infty]{} \ell$ (cours) et $\lambda u_n (1 u_n) \xrightarrow[n \to +\infty]{} \lambda \ell (1 \ell)$. Donc

$$\ell = \lambda \ell (1 - \ell).$$

Or,

$$\ell = \lambda \ell (1 - \ell) \Leftrightarrow \lambda \ell^2 + (1 - \lambda)\ell = 0$$
$$\Leftrightarrow \ell (\lambda \ell + 1 - \lambda) = 0$$
$$\Leftrightarrow \ell = 0 \text{ ou } \ell = \frac{\lambda - 1}{\lambda}.$$

2020-2021

Prof. Mamouni

http://myismail.net

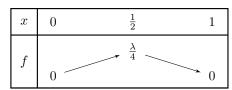
 ${\rm http://elbiliasup.ma}$

Or $0<\lambda\leqslant 1$, donc $\frac{\lambda-1}{\lambda}\leqslant 0$. Puisque $0\leqslant \ell\leqslant 1$, on en déduit que $\ell=0$.

Conclusion:
$$\lim_{n \to +\infty} u_n = 0$$

Partie 2 - Deuxième cas : $1 < \lambda \leqslant 2$

5. (a) Pour tout réel x, $f(x) = \lambda x - \lambda x^2$. Donc $f(x) = ax^2bx + c$ avec $a = -\lambda < 0$, $b = \lambda$ et c = 0. $-\frac{b}{2a} = \frac{1}{2}$ donc d'après le cours (sur les fonctions du second degré) :



(b) $m = 1 - \frac{1}{\lambda}$ donc

$$f(m) = \lambda \left(1 - \frac{1}{\lambda} \right) - \lambda \left(1 - \frac{1}{\lambda} \right)^2$$
$$= \lambda - 1 - \lambda \left(1 - \frac{2}{\lambda} + \frac{1}{\lambda^2} \right)$$
$$= 1 - \frac{1}{\lambda}$$

Donc f(m) = m. De plus,

$$1 < \lambda \leqslant 2 \text{ donc } 1 > \frac{1}{\lambda} \geqslant \frac{1}{2}$$

car la fonction inverse est strictement décroissante sur \mathbb{R}_{+}^{*} . Ainsi,

$$-1 < -\frac{1}{\lambda} \leqslant -\frac{1}{2} \text{ donc } \boxed{0 < m \leqslant \frac{1}{2}.}$$

6. On suppose pour cette question que $0 < u_0 \le m$.

(a) Démontrons par récurrence sur n que pour tout $n \in \mathbb{N}$, $0 \le u_n \le m$.

Initialisation: $0 < u_n \le m$ d'après l'énoncé.

Hérédité : Soit $n \in \mathbb{N}$ tel que $0 \leq u_n \leq m$. $u_{n+1} = \lambda u_n (1 - u_n) = f(u_n)$.

Puisque $m \leq \frac{1}{2}$ que la fonction f est croissante sur $]-\infty,\frac{1}{2}]$ (question 5a),

$$f(0) \leqslant f(u_n) \leqslant f(m)$$

Or, f(0) = 0 et f(m) = m (question 5b). Donc

$$0 \leqslant u_{n+1} \leqslant m$$
.

Conclusion: par récurrence, $0 \le u_n \le m$ pour tout $n \in \mathbb{N}$.

(b) Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = (\lambda - 1)u_n - \lambda(u_n)^2$$
$$= u_n (\lambda - 1 - \lambda u_n)$$

Or, $u_n \geqslant 0$ et

$$u_n \leqslant m \text{ donc } u_n \leqslant 1 - \frac{1}{\lambda} \text{ donc } \lambda u_n \leqslant \lambda - 1 \text{ (car } \lambda > 0).$$

Ainsi, $\lambda - 1 - \lambda u_n \ge 0$. On en déduit que $u_{n+1} - u_n \ge 0$ La suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

- (c) $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée par m donc elle converge vers un réel ℓ , d'après le théorème de la limite monotone.
 - Pour tout $n \in \mathbb{N}$, $u_0 \leqslant u_n \leqslant m$ (on utilise la croissance) donc par passage à la limite $u_0 \leqslant \ell \leqslant m$, avec $u_0 > 0$.
 - Pour tout $n \in \mathbb{N}$, $u_{n+1} = \lambda u_n (1 u_n)$. Comme à la question 4b,

$$\ell = \lambda \ell (1 - \ell),$$

ce qui donne :

$$\ell = 0$$
 ou $\ell = \frac{\lambda - 1}{\lambda}$.

Puisque $\ell > 0$, on en déduit que

$$\ell = \frac{\lambda - 1}{\lambda} = 1 - \frac{1}{\lambda} = m.$$

Conclusion: $(u_n)_{n\in\mathbb{N}}$ converge vers m.

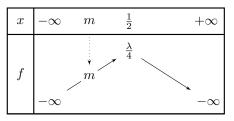
2020-2021

Prof. Mamouni

http://myismail.net

http://elbiliasup.ma

7. On suppose maintenant que $m \le u_0 \le \frac{1}{2}$. Le tableau de variation de f



permet de dire que $u_1 = f(u_0)$ est entre m et $\frac{\lambda}{4}$. Et comme $\frac{\lambda}{4} \leqslant \frac{2}{4} = \frac{1}{2}$, $m \leqslant u_1 \leqslant \frac{1}{2}$.

Démontrons par récurrence que pour tout $n \in \mathbb{N}$, $m \leqslant u_n \leqslant \frac{1}{2}$.

Initialisation : $m \le u_0 \le \frac{1}{2}$ par hypothèse.

Hérédité: Soit $n \in \mathbb{N}$ tel que $m \leqslant u_n \leqslant \frac{1}{2}$. Puisque que la fonction f est croissante sur $]-\infty,\frac{1}{2}]$ (question 5a),

$$f(m) \leqslant f(u_n) \leqslant f\left(\frac{1}{2}\right) \text{ donc } m \leqslant u_{n+1} \leqslant \frac{\lambda}{4}.$$

Or $\frac{\lambda}{4} \leqslant \frac{1}{2}$, donc

$$m \leqslant u_{n+1} \leqslant \frac{1}{2}.$$

Conclusion : par récurrence, $m \leq u_n \leq \frac{1}{2}$ pour tout $n \in \mathbb{N}$.

Étudions maintenant la monotonie de $(u_n)_{n\in\mathbb{N}}$.

Soit $n \in \mathbb{N}$.

$$u_{n+1} - u_n = u_n (\lambda - 1 - \lambda u_n)$$
$$= \lambda u_n (m - u_n).$$

Or, $u_n \ge 0$, $\lambda > 0$ et $m-u_n \le 0$. On en déduit que $u_{n+1}-u_n \le 0$. La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

Il nous reste à montrer la convergence et à calculer la limite.

- $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par m donc elle converge vers un réel ℓ , d'après le théorème de la limite monotone.
- Pour tout $n \in \mathbb{N}$, $m \le u_n \le \frac{1}{2}$ donc par passage à la limite $m \le \ell \le \frac{1}{2}$.
- Pour tout $n \in \mathbb{N}$, $u_{n+1} = \lambda u_n (1 u_n)$. Comme précédemment

$$\ell = \lambda \ell (1 - \ell),$$

donc

$$\ell = 0$$
 ou $\ell = m$.

Puisque $\ell \geqslant m > 0$, on en déduit que $\ell = m$.

Conclusion : $|(u_n)_{n\in\mathbb{N}}$ converge vers m.

2020-2021

Prof. Mamouni

http://myismail.net

Problème 3

Partie I: Quelques questions préliminaires -

1. Soit $x \in [0, 1]$. Alors

$$\frac{1}{2} + \frac{x}{2} - \frac{1}{2-x} = \frac{2-x+x(2-x)-2}{2(2-x)} = \frac{x-x^2}{2(2-x)} = \frac{x(1-x)}{2(2-x)} \ge 0.$$

Donc

$$\frac{1}{2} + \frac{x}{2} \ge \frac{1}{2-x} \,.$$

2. (a) Soit un réel y > 0. Alors

$$\int_{y}^{y+1} \frac{1}{t} dt = [\ln(t)]_{y}^{y+1} = \ln(y+1) - \ln(y).$$

(b) Soit un réel y>0. Alors, pour tout $t\in[y,y+1],\,\frac{1}{t}\geq\frac{1}{y+1}$ et donc

$$\int_{y}^{y+1} \frac{1}{y+1} dt \le \int_{y}^{y+1} \frac{1}{t} dt \quad i.e. \quad \frac{1}{y+1} \le \ln(y+1) - \ln(y).$$

Partie II: étude d'une suite récurrente d'ordre 1 -

1. Pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = \frac{1 + u_n^2}{2} - u_n = \frac{1}{2}(u_n^2 - 2u_n + 1) = \frac{1}{2}(u_n - 1)^2 \ge 0.$$

Donc la suite $(u_n)_{n>0}$ est croissante.

2. Posons, pour tout $n \in \mathbb{N}$, la proposition $\mathcal{A}(n)$: « $0 \le u_n < 1$ ».

Initialisation: $u_0 = 0$ donc $0 \le u_0 < 1$ et donc $\mathcal{A}(0)$ est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}$: Soit un entier n. Supposons que $\mathcal{A}(n)$ est vraie.

Alors $0 \le u_n < 1$. Comme la fonction $t \mapsto t^2$ est strictement croissante sur \mathbb{R}_+ , alors $0 \le u_n^2 < 1$ et donc

$$\frac{1}{2} \le \frac{1 + u_n^2}{2} < \frac{1 + 1}{2} = 1.$$

Ainsi $0 \le u_{n+1} < 1$ ce qui signifie que $\mathcal{A}(n+1)$ est vraie.

Bilan: Pour tout $n \in \mathbb{N}$, $\mathcal{A}(n)$ est vraie.

3. (a) Pour tout entier $k \geq 0$,

$$\frac{1}{v_{k+1}} - \frac{1}{v_k} = \frac{1}{1 - u_{k+1}} - \frac{1}{1 - u_k} = \frac{2}{1 - u_k^2} - \frac{1}{1 - u_k} = \frac{1 - u_k}{1 - u_k^2} = \frac{1}{1 + u_k} = \frac{1}{2 - v_k}.$$

Or: $\forall k \in \mathbb{N}, 0 \le u_k < 1 \text{ donc } 0 < v_k \le 1 \text{ et donc } 1 \le 2 - v_k < 2.$

Ainsi on a bien : $\forall k \in \mathbb{N}$,

$$\frac{1}{v_{k+1}} - \frac{1}{v_k} = \frac{1}{2 - v_k} \ge \frac{1}{2}.$$

(b) Soit un entier $n \ge 1$. En sommant l'inégalité précédente pour k allant de 0 à n-1 on obtient

$$\sum_{k=0}^{n-1} \left(\frac{1}{v_{k+1}} - \frac{1}{v_k} \right) \ge \sum_{k=0}^{n-1} \frac{1}{2} = \frac{n}{2}.$$

Or

$$\sum_{k=0}^{n-1} \left(\frac{1}{v_{k+1}} - \frac{1}{v_k} \right) = \sum_{k=0}^{n-1} \frac{1}{v_{k+1}} - \sum_{k=0}^{n-1} \frac{1}{v_k} = \sum_{k=1}^{n} \frac{1}{v_k} - \sum_{k=0}^{n-1} \frac{1}{v_k} = \frac{1}{v_n} - \frac{1}{v_0} = \frac{1}{v_n} - 1.$$

On obtient donc bien

$$\frac{1}{v_n} \ge \frac{n+2}{2}.$$

4. (a) Soit un entier $k \ge 0$. D'après la question 2., $v_k \in [0,1]$. Ainsi d'après la question 1. de la partie I et la question 3.(a)

$$\frac{1}{v_{k+1}} - \frac{1}{v_k} = \frac{1}{2 - v_k} \le \frac{1}{2} + \frac{1}{2} \cdot v_k.$$

D'après la question précédente

$$v_k \le \frac{2}{k+2}.$$

Or d'après la question 2. de la partie I

$$\frac{2}{k+2} \le 2(\ln(k+2) - \ln(k+1)).$$

Ainsi

$$\frac{1}{v_{k+1}} - \frac{1}{v_k} \le \frac{1}{2} + \ln(k+2) - \ln(k+1).$$

(b) Soit un entier $n \ge 1$. En sommant l'inégalité précédente pour k allant de 0 à n-1, on obtient

$$\sum_{k=0}^{n-1} \left(\frac{1}{v_{k+1}} - \frac{1}{v_k} \right) \le \sum_{k=0}^{n-1} \left(\frac{1}{2} + \ln(k+2) - \ln(k+1) \right) = \frac{n}{2} + \sum_{k=0}^{n-1} \left(\ln(k+2) - \ln(k+1) \right).$$

Or, comme précédemment, on a

$$\sum_{k=0}^{n-1} \left(\frac{1}{v_{k+1}} - \frac{1}{v_k} \right) = \frac{1}{v_n} - \frac{1}{v_0} = \frac{1}{v_n} - 1.$$

Et de même on obtient

$$\sum_{k=0}^{n-1} (\ln(k+2) - \ln(k+1)) = \ln(n+1) - \ln(1) = \ln(n+1).$$

On a donc bien

$$\frac{1}{v_n} \le \frac{n+2}{2} + \ln(n+1).$$

5. (a) On obtient finalement : $\forall n \in \mathbb{N}^*$,

$$\frac{n+2}{2} \le \frac{1}{v_n} \le \frac{n+2}{2} + \ln(n+1).$$

Ainsi : $\forall n \in \mathbb{N}^*$,

$$\frac{n+2}{2n} \le \frac{1}{nv_n} \le \frac{n+2}{2n} + \frac{\ln(n+1)}{n}.$$

Prof. Mamouni

http://elbiliasup.ma

2020-2021

http://myismail.net

Or

$$\frac{n+2}{2n} \underset{n \to +\infty}{\longrightarrow} \frac{1}{2},$$

et par croissance comparée

$$\frac{\ln(n+1)}{n} = \frac{\ln(n+1)}{n+1} \cdot \frac{n+1}{n} \xrightarrow[n \to +\infty]{} 0 \times 1 = 0.$$

On en déduit d'après le théorème d'encadrement que

$$\frac{1}{nv_n} \underset{n \to +\infty}{\longrightarrow} \frac{1}{2}.$$

Ainsi on a bien

$$nv_n \xrightarrow[n \to +\infty]{} 2.$$

(b) Pour tout $n \in \mathbb{N}$,

$$v_n = (nv_n) \times \frac{1}{n} \,.$$

Donc par opération sur les limites, on en déduit que

$$v_n \underset{n \to +\infty}{\longrightarrow} 2 \times 0 = 0$$
.

Or : $\forall n \in \mathbb{N}, u_n = 1 - v_n$. Donc

$$u_n \xrightarrow[n \to +\infty]{} 1.$$

Problèmes Corrigés

2019-2020

Prof. Mamouni

http://myismail.net

