Problèmes Corrigés

2018-2019

My Ismail Mamouni

http://myismail.net

Préparation Concours Blanc N°2 Polynômes

Problème 1

Préliminaires .

- 1. Soit $P \in \mathbb{C}[X]$. Montrer que si P admet une infinité de racines alors P est le polynôme nul.
- 2. En déduire que pour tout couple $(P,Q) \in (\mathbb{C}[X])^2$, $P = Q \Leftrightarrow \forall u \in \mathbb{C}^*$, $\tilde{P}(u) = \tilde{Q}(u)$.
- 3. Résoudre la suite récurrente : $\forall n \in \mathbb{N}, u_{n+2} = -u_n \text{ avec } u_0 = 2 \text{ et } u_1 = 0.$

Le problème .

On s'intéresse à l'existence et aux propriétés de la famille de polynômes $P_n \in \mathbb{C}_n[X]$ tels que :

$$\forall n \in \mathbb{N}, \forall z \in \mathbb{C}^*, \, \tilde{P}_n(z + \frac{1}{z}) = z^n + \frac{1}{z^n}$$

- 1. Pour $n \in \mathbb{N}$, on suppose qu'un tel polynôme P_n existe .
 - (a) Montrer que P_n n'est pas le polynôme nul.

On notera alors d_n le degré du polynôme P_n et on notera $P_n = \sum_{k=0}^{d_n} a_{n,k} X^k$.

- (b) Montrer, en vous aidant du binôme de Newton, que $Q_n(X) = X^{d_n} P_n(X + \frac{1}{X})$ est un polynôme de degré $2d_n$.
- (c) En vous aidant des préliminaires, en déduire que :

$$X^{d_n}P_n(X+\frac{1}{X}) = X^{d_n+n} + X^{d_n-n}$$

- (d) Justifier que $d_n = n$.
- (e) Montrer que si P_n existe alors il est unique.
- 2. Déterminer P_0 et P_1 .
- 3. Montrer que $P_2 = X^2 2$.
- 4. En vous aidant des préliminaires, montrer que :

$$\forall n \in \mathbb{N}, \ P_{n+2} = XP_{n+1} - P_n$$

On pourra évaluer en $z + \frac{1}{z}$ pour $z \in \mathbb{C}^*$.

- 5. Calculer P_3 .
- 6. Pour $n \in \mathbb{N}^*$, conjecturer et démontrer le coefficient dominant de P_n .
- 7. Pour $n \in \mathbb{N}$, conjecturer et démontrer la parité de \tilde{P}_n .
- 8. Déterminer à l'aide d'une suite récurrente, le coefficient constant de P_n .
- 9. On cherche à déterminer les racines de P_n pour $n \in \mathbb{N}^*$.
 - (a) Soit $z \in \mathbb{C}^*$, montrer que :

$$z^n + \frac{1}{z^n} = 0 \Rightarrow |z| = 1$$

(b) Résoudre dans \mathbb{C}^* , l'équation :

$$z^n + \frac{1}{z^n} = 0$$

On pourra chercher z sous forme trigonométrique.

- (c) En déduire que les racines de P_n sont de la forme $2\cos(\frac{\pi}{2n} + \frac{k\pi}{n})$ avec $k \in \mathbb{Z}$.
- (d) Déterminer la factorisation de P_n dans $\mathbb{R}[X]$.

http://elbilia.sup

Problèmes Corrigés

2018-2019

My Ismail Mamouni

http://myismail.net

Problème 2

Soient a et b deux nombres complexes.

Dans ce problème, on étudie les polynômes $P \in \mathbb{C}[X]$ vérifiant la relation $(E_{a,b}): P(X^2) = P(X+a) \times P(X+b)$

- Dans les deux premières parties, on s'intéresse à des cas particuliers.
- \triangleright Dans la troisième partie, on étudie certaines propriétés vérifiées par les polynômes non constant qui satisfont $(E_{a,b})$.

Les trois parties de ce problème sont indépendantes les unes des autres.

Première partie : polynômes constants vérifiant $\left(E_{a,b}\right)$

Déterminer l'ensemble des polynômes constants de $\mathbb{C}[X]$ vérifiant $(E_{a,b})$.

Dans toute la suite, on note $S_{a,b}$ l'ensemble des polynômes **non constants** vérifiant (E_{ab}) .

Deuxième partie : étude de deux cas particuliers

- 1. Dans cette question, on se place dans le cas particulier où a = b. On note P un polynôme non constant de $\mathbb{C}[X]$, et on note r le nombre de ses racines **distinctes**.
 - (a) Montrer que le polynôme $(P(X+a))^2$ possède exactement r racines distinctes.
 - (b) Montrer que $P(X^2)$ possède 2r racines distinctes si 0 n'est pas racine de P, et qu'il en possède 2r-1 sinon.
 - (c) En déduire que, si $P \in S_{a,a}$, alors il existe $\lambda \in \mathbb{C}^*$ et $n \in \mathbb{N}^*$ tels que $P = \lambda X^n$.
 - (d) Conclure que, si $a \neq 0$, $S_{a,a} = \emptyset$. Préciser l'ensemble $S_{0,0}$.
- 2. Dans cette question, on se place dans le cas particulier où a=0 et b=1.

On note P un polynôme de $S_{0,1}$.

- (a) Justifier que P possède au moins une racine $\alpha \in \mathbb{C}$.
- (b) Montrer que $P(\alpha^2) = 0$, puis que, pour tout $n \in \mathbb{N}$, $P(\alpha^{2^n}) = 0$.
- (c) Déduire de ce qui précède qu'il existe $(k,\ell) \in \mathbb{N}^2$ tels que $\alpha^{2^k} = \alpha^{2^\ell}$, puis que $|\alpha| \in \{0,1\}$.
- (d) Prouver que $P((\alpha 1)^2) = 0$, puis que $|\alpha 1| \in \{0, 1\}$.
- (e) Conclure que les seules racines possibles de P sont 0, 1, -j et $-j^2$.
- (f) En utilisant la question 2.(b), montrer que ni -j, ni $-j^2$ ne sont racines de P.
- (g) Montrer que $S_{0,1} = \{(X^2 X)^n : n \in \mathbb{N}^*\}.$

Troisième partie : quelques propriétés dans le cas général

Dans cette partie, on établit certains résultats généraux dans le cas où $S_{a,b}$ n'est pas vide. On suppose donc que a et b sont tels que $S_{a,b} \neq \emptyset$.

- 1. Montrer que tout polynôme de $S_{a,b}$ est unitaire, c'est-à-dire que son coefficient dominant vaut 1.
- 2. Montrer que l'ensemble $S_{a,b}$ est stable par produit, autrement dit que : $\forall (P,Q) \in S_{a,b}^2$, $PQ \in S_{a,b}$.
- 3. Montrer que, pour tout $P \in S_{a,b}$ et pour tout $n \in \mathbb{N}^*$, $P^n \in S_{a,b}$.
- 4. On cherche ici à établir la réciproque du résultat précédent.
 - (a) Soient $n \in \mathbb{N}^*$ et A et B deux polynômes non nuls de $\mathbb{C}[X]$.

On veut montrer ici que $A^n - B^n = \prod_{k=0}^{n-1} \left(A - e^{i\frac{2k\pi}{n}} B \right)$.

i. Montrer que
$$X^n - 1 = \prod_{k=0}^{n-1} \left(X - e^{i\frac{2k\pi}{n}}\right)$$
.

ii. On pose
$$U = A^n - B^n$$
 et $V = \prod_{k=0}^{n-1} \left(A - e^{i\frac{2k\pi}{n}} B \right)$.

Montrer que, si z est un nombre complexe qui n'est pas racine de B, alors U(z) = V(z).

- iii. Conclure.
- (b) Soient $n \in \mathbb{N}^*$ et P un polynôme non constant unitaire de $\mathbb{C}[X].$

Montrer que, si $P^n \in S_{a,b}$, alors $P \in S_{a,b}$