http://elbilia.sup

Problèmes Corrigés

2021-2022

Prof. Mamouni
http://myismail.net

Devoir Surveillé N°4

Structures-Arithmétique

Fonctions Réelles

Durée: 4 heures

Problème 1 : Entiers somme de deux carrés

L'objectif de ce problème est de déterminer quels sont les entiers naturels qui sont somme de deux carrés.

Notations:

 \mathbb{N} , \mathbb{Z} et \mathbb{C} désignent respectivement les ensembles des entiers naturels, des entiers relatifs et des nombres complexes.

On pose $\mathbb{Z}[i] = \{a + ib / a \in \mathbb{Z}, b \in \mathbb{Z}\} \subset \mathbb{C} \text{ et } \mathbb{Z}[i]^* = \mathbb{Z}[i] \setminus \{0\}.$

Pour $z \in \mathbb{C}$, on pose $N(z) = z\overline{z}$.

Partie I :Présentation de l'anneau de $\mathbb{Z}[i]$

- 1. Présentation de l'anneau $\mathbb{Z}[i]$.
- 1.a Vérifier que $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} muni de l'addition et de la multiplication usuelles.
- 1.b Etablir que pour tout $u, v \in \mathbb{Z}[i]$, N(uv) = N(u)N(v) et que pour tout $u \in \mathbb{Z}[i]$, $N(u) \in \mathbb{N}$.
- 1.c Un élément $u \in \mathbb{Z}[i]$ est dit inversible ssi il existe $v \in \mathbb{Z}[i]$ tel que uv = 1.

Montrer que si u est inversible alors N(u) = 1.

Déterminer alors l'ensemble, noté U , des éléments inversibles de $\mathbb{Z}[i]$.

2. Divisibilité dans l'anneau $\mathbb{Z}[i]$.

Soit $u, v \in \mathbb{Z}[i]$. On dit que u divise v dans $\mathbb{Z}[i]$, et on note $u \mid v$, ssi il existe $s \in \mathbb{Z}[i]$ tel que v = su.

- 2.a Soit $u, v, w \in \mathbb{Z}[i]$. Etablir l'implication que si $u \mid v$ et $v \mid w$ alors $u \mid w$.
- 2.b Soit $u, v \in \mathbb{Z}[i]$. Etablir que si $u \mid v$ et $v \mid u$ alors $u = \pm v$ ou $\pm iv$.
- 2.c Soit $u, v \in \mathbb{Z}[i]$. Montrer que si u divise v alors N(u) divise N(v) dans \mathbb{Z} .
- 2.d Déterminer les diviseurs de 1+i, puis de 1+3i dans $\mathbb{Z}[i]$.
- 3. Division euclidienne dans $\mathbb{Z}[i]$.
- 3.a Montrer que pour tout $z\in\mathbb{C}$, il existe $u\in\mathbb{Z}[i]$ tel que N(u-z)<1 .

Ce u est-il unique ?

 $\text{3.b} \qquad \text{Montrer que pour tout } \ u \in \mathbb{Z}\big[i\big] \ \text{ et tout } \ v \in \mathbb{Z}\big[i\big] *, \text{ il existe } \ (q,r) \in \mathbb{Z}\big[i\big] \times \mathbb{Z}\big[i\big] \ \text{ tel que :}$

u = vq + r avec N(r) < N(v).

On pourra utiliser la division dans $\mathbb C$.

Partie II : Arithmétique dans $\mathbb{Z}[i]$

1. Soit $\delta \in \mathbb{Z}[i]$. On note $\delta .\mathbb{Z}[i] = \{\delta u / u \in \mathbb{Z}[i]\}$.

Montrer que $\delta \mathbb{Z}[i]$ est un sous-groupe additif de $\mathbb{Z}[i]$.

- 2. Soit $u,v \in \mathbb{Z}[i]$ avec $u \neq 0$ ou $v \neq 0$. On note $I(u,v) = \{uz + vz'/z, z' \in \mathbb{Z}[i]\}$.
- 2.a Observer que u et v appartiennent à l'ensemble I(u,v).
- 2.b Montrer que l'ensemble $A = \{N(w)/w \in I(u,v) \setminus \{0\}\}$ possède un plus petit élément d > 0.
- 2.c Soit δ un élément de I(u,v) tel que $N(\delta)=d$. Etablir que $I(u,v)=\delta.\mathbb{Z}\big[i\big]$. On pourra exploiter la division euclidienne présentée en I.3b.

http://elbilia.sup

Problèmes Corrigés

2021-2022

Prof. Mamouni

http://myismail.net

- 2.d Montrer que δ divise u et v puis que pour tout $w \in \mathbb{Z}[i]$, on a l'équivalence : ($w \mid u$ et $w \mid v$) $\Leftrightarrow w \mid \delta$. On dit que δ est un pgcd de u et v.
- 3. Soit $u,v \in \mathbb{Z}[i]$ avec $u \neq 0$ ou $v \neq 0$.

 On dit que u et v sont premiers entre eux ssi le nombre δ défini en II.2.d appartient à $\{\pm 1, \pm i\}$.

 Dans les questions 3.a et 3.b, on suppose que u et v sont premiers entre eux.
- 3.a Justifier qu'il existe $z, z' \in \mathbb{Z}[i]$ tel que 1 = uz + vz'
- 3.b Soit $w \in \mathbb{Z}[i]$. Montrer que si u divise vw alors u divise w .
- 4. Soit $u \in \mathbb{Z}[i] \{0, \pm 1, \pm i\}$. On dit que u est irréductible ssi ses seuls diviseurs sont $\pm 1, \pm i, \pm u$ et $\pm iu$.
- 4.a Soit $v \in \mathbb{Z}[i]$. On suppose que u irréductible et ne divise pas v. Montrer que u et v sont premiers entre eux.
- 4.b Soit $v,w\in\mathbb{Z}[i]$. On suppose que u est irréductible et divise vw. Montrer que u divise v ou divise w.

Partie III : Nombres somme de deux carrés

- 1. On note $\Sigma = \left\{ a^2 + b^2 / a \in \mathbb{Z}, b \in \mathbb{Z} \right\}$.
- 1.a Montrer que $n \in \Sigma \Leftrightarrow \exists u \in \mathbb{Z}[i], n = N(u)$.
- 1.b En déduire que si $n, n' \in \Sigma$ alors $nn' \in \Sigma$.
- 2. p désigne un nombre premier strictement supérieur à 2.
- 2.a Montrer que $p \in \Sigma \Rightarrow p \equiv 1 \mod 4$. Nous admettrons que l'implication réciproque est vraie (quoique loin d'être immédiate). Ainsi $5 = 1^2 + 2^2$, $13 = 2^2 + 3^2$, $17 = 1^2 + 4^2$,... sont des éléments de Σ .
- 2.b Montrer que si p n'est par irréductible alors $p \in \Sigma$.
- 3. Soit $a,b \in \mathbb{Z}$ et $n=a^2+b^2 \in \Sigma$. Soit $p \equiv 3$ modulo 4, un nombre premier diviseur de n.
- 3.a Montrer que $p \mid a + ib$ dans $\mathbb{Z}[i]$.
- 3.b En déduire que p^2 divise n.
- 4. Etablir que les entiers naturels non nuls appartenant à Σ sont les nombres de la forme $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_N^{\alpha_N}$ avec p_1,p_2,\dots,p_N nombres premiers deux à deux distincts et $\alpha_1,\alpha_2,\dots,\alpha_N$ entiers naturels tels que : $\forall 1 \leq i \leq N$, $p_i \equiv 3$ modulo $4 \Rightarrow \alpha_i$ est pair.

http://myismail.net

Prof. Mamouni

http://elbilia.sup

2021-2022

Problème 2 : Etude d'une équation fonctionnelle

Thèmes abordés: Continuité et dérivabilité des fonctions numériques.

Les parties I et II sont entièrement indépendantes.

En dehors de la dernière question, la partie III est indépendante de la partie II.

Dans tout le problème : on considère la fonction $\varphi: \mathbb{R} \to \mathbb{R}$ définie par $\varphi(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$.

Partie I : Etude de la fonction φ

- 1.a Etudier la parité de φ .
- 1.b Etudier les variations de φ sur \mathbb{R} et préciser ses branches infinies en $+\infty$ et $-\infty$.
- 1.c Donner l'allure de la courbe représentative de φ .
- 2.a Justifier que φ est une bijection de $\mathbb R$ sur un intervalle I de $\mathbb R$ à préciser.
- 2.b Observer que pour tout $x \in \mathbb{R}$: $\varphi'(x) = 1 \varphi^2(x)$.
- 2.c Montrer que $\varphi^{-1}: I \to \mathbb{R}$ est dérivable et exprimer simplement sa dérivée.

Partie II : Etude d'une première équation fonctionnelle

Le but de cette partie est de déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 vérifiant :

$$\forall x \in \mathbb{R}, f(2x) = 2f(x)$$
.

On considère f une fonction solution.

- 1. Calculer f(0).
- $2. \qquad \text{Soit } x \in \mathbb{R}^* \text{ . On définit une suite réelle } (u_{\scriptscriptstyle n}) \text{ par : } \forall n \in \mathbb{N}, u_{\scriptscriptstyle n} = \frac{f\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}} \, .$
- 2.a Montrer que (u_n) converge et exprimer sa limite.
- 2.b Exprimer u_{n+1} en fonction de u_n .
- 3. Conclure qu'il existe $\alpha \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}, f(x) = \alpha ... x$.

Partie III: Etude d'une seconde équation fonctionnelle

Le but de cette partie est de déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivable en 0 vérifiant :

$$\forall x \in \mathbb{R}, f(2x) = \frac{2f(x)}{1 + (f(x))^2}.$$

- 1. Montrer que φ est solution du problème posé.
- 2. On considère dans cette question f une solution du problème posé.
- 2.a Déterminer les valeurs possibles de f(0).
- 2.b Montrer que -f est aussi solution

http://elbilia.sup

Problèmes Corrigés

2021-2022

Prof. Mamouni

http://myismail.net

- 2.c Montrer que $\forall x \in \mathbb{R}, -1 \le f(x) \le 1$. (indice : on pourra exprimer f(x) en fonction de $f\left(\frac{x}{2}\right)$).
- 3. On suppose dans cette question que f est solution du problème posé et que f(0)=1. On considère $x\in\mathbb{R}$ et l'on définit la suite (u_n) par $\forall n\in\mathbb{N}, u_n=f\left(\frac{x}{2^n}\right)$.
- 3.a Montrer que la suite (u_n) est convergente et préciser sa limite.
- 3.b Etablir une relation entre u_n et u_{n+1} .
- 3.c En déduire que la suite (u_n) garde un signe constant et préciser celui-ci.
- 3.d Etudier la monotonie de la suite (u_n) et en déduire que celle-ci est constante égale à 1.
- 3.e Qu'en déduire quant à la fonction f?
- 3.f Que peut-on dire si l'hypothèse « f(0) = 1 » et remplacée par « f(0) = -1 »?
- 4. On suppose dans cette question que f est solution du problème posé et que f(0) = 0.
- 4.a En raisonnant par l'absurde et en considérant une suite du même type que ci-dessus, montrer que $\forall x \in \mathbb{R}, f(x) \neq 1$ et $f(x) \neq -1$.
- 4.b On introduit la fonction $g: \mathbb{R} \to \mathbb{R}$ définie par $g(x) = \varphi^{-1}(f(x))$. Montrer que $\forall x \in \mathbb{R}, g(2x) = 2g(x)$ et que g est dérivable en 0.
- 4.c En déduire une expression de f(x) dépendant d'un paramètre $\alpha \in \mathbb{R}$.

Correction Problème 1:

Partie I

1.a $\mathbb{Z}[i] \subset \mathbb{C}$, $1 = 1 + 0.i \in \mathbb{Z}[i]$ et $\forall u, v \in \mathbb{Z}[i]$, on peut écrire u = a + ib, v = c + id avec $a, b, c, d \in \mathbb{Z}$ On a $u - v = (a - c) + i(b - d) \in \mathbb{Z}[i]$ (car $a - c, b - d \in \mathbb{Z}$), et $uv = (ac - bd) + i(ad + bc) \in \mathbb{Z}[i]$ car $ac - bd, ad + bc \in \mathbb{Z}$. Ainsi $\mathbb{Z}[i]$ est un sous anneau de $(\mathbb{C}, +, \times)$.

1.b $\forall u, v \in \mathbb{Z}[i], \ N(uv) = uv\overline{uv} = u\overline{u}v\overline{v} = N(u)N(v)$ $\forall u \in \mathbb{Z}[i], \text{ on peut \'ecrire } u = a + ib \text{ avec } a, b \in \mathbb{Z} \text{ donc } N(u) = u\overline{u} = a^2 + b^2 \in \mathbb{N}.$

1.c Supposons $u \in \mathbb{Z}[i]$ inversible et introduisons $v \in \mathbb{Z}[i]$ tel que uv = 1. On a N(uv) = N(1) = 1 et N(uv) = N(u)N(v) donc N(u)N(v) = 1 avec $N(u), N(v) \in \mathbb{N}$. Par suite N(u) = N(v) = 1.

On peut écrire u = a + ib avec $a, b \in \mathbb{Z}$.

 $N(u) = a^2 + b^2 = 1 \text{ donne } (a,b) = (1,0), (-1,0), (0,1) \text{ ou } (0,-1) \text{ donc } u = \pm 1 \text{ ou } u = \pm i \text{ .}$ Inversement, ses éléments sont inversibles car $1 \times 1 = 1$, $(-1) \times (-1) = 1$, $i \times (-i) = 1$ et $(-i) \times i = 1$. $U = \{1,i,-1,-i\}$.

2.a Si $u \mid v$ et $v \mid w$ alors il existe $s,t \in \mathbb{Z}[i]$ tel que v=su et w=tv. On a alors w=(st)u avec $st \in \mathbb{Z}[i]$ et par suite $u \mid w$.

2.b Si $u \mid v$ et $v \mid u$ alors il existe $s,t \in \mathbb{Z}\big[i\big]$ tel que v = su et u = tv .

Par suite u = (ts)u.

Si $u \neq 0$, on obtient ts = 1 donc t est inversible et alors $t = \pm 1$ ou $t = \pm i$.

Par suite $u = \pm v$ ou $u = \pm iv$.

Si u = 0 alors v = su = u et donc u = v.

2.c Si $u \mid v$ alors il existe $s \in \mathbb{Z}[i]$ tel que v = su. On a alors N(v) = N(su) = N(s)N(u) avec $N(s) \in \mathbb{N}$ donc $N(u) \mid N(v)$.

2.d N(1+i) = 2 et $Div(2) \cap \mathbb{N} = \{1, 2\}$.

Si u divise 1+i alors N(u)=1 ou N(u)=2.

Si N(u) = 1 alors $u = \pm 1$ ou $u = \pm i$.

Si N(u) = 2 alors u = 1 + i, 1 - i, -1 + i ou -1 - i.

Inversement, les nombres proposés sont diviseurs de 1+i.

N(1+3i) = 10 et $Div(10) \cap \mathbb{N} = \{1, 2, 5, 10\}$.

Si N(u) = 1 alors $u = \pm 1$ ou $u = \pm i$.

Si N(u) = 2 alors u = 1 + i, 1 - i, -1 + i ou -1 - i.

Si N(u) = 5 alors u = 1 + 2i, 1 - 2i, -2 + i ou -2 - i.

Si N(u) = 10 alors u = 1 + 3i, 1 - 3i, -3 + i ou -3 - i.

Inversement, les nombres proposés sont diviseurs de 1+3i.

3.a Soit a et b les entiers respectivement les plus proches de Re(z) et Im(z).

Pour
$$u = a + ib \in \mathbb{Z}[i]$$
, on a $N(u - v) = (a - \text{Re}(z))^2 + (b - \text{Im } z)^2 \le \frac{1}{4} + \frac{1}{4} \le \frac{1}{2} < 1$.

Il n'y a pas unicité de u. Par exemple, pour $z = \frac{1+i}{2}$, les quatre complexes 0,1,i et 1+i conviennent.

3.b Soit $q \in \mathbb{Z}[i]$ tel que $N\left(q-\frac{u}{v}\right) < 1$ et $r = u - vq \in \mathbb{Z}[i]$. On a u = vq + r et $N(r) = N(u - vq) = N(v)N\left(\frac{u}{v} - q\right) < N(v)$ (sachant N(v) > 0).

Partie II

- 1. $\delta \mathbb{Z}[i] \subset \mathbb{Z}[i]$. $0 = \delta . 0 \in \delta . \mathbb{Z}[i]$. $\forall x, y \in \delta . \mathbb{Z}[i]$, on peut écrire $x = \delta . u$ et $y = \delta . v$ avec $u, v \in \mathbb{Z}[i]$. On a $x y = \delta . (u v) \in \delta . \mathbb{Z}[i]$ car $u v \in \mathbb{Z}[i]$. Ainsi $\delta . \mathbb{Z}[i]$ est un sous groupe de $(\mathbb{Z}[i], +)$.
- 2.a $u = u.1 + v.0 \in I(u, v)$ et $v = u.0 + v.1 \in I(u, v)$.
- 2.b $A = \{N(w)/w \in I(u,v) \setminus \{0\}\}$ est une partie de \mathbb{Z} , minorée par 1 et non vide car N(u) ou N(v) appartient à cet ensemble (selon que $u \neq 0$ ou $v \neq 0$). Par suite A possède un plus petit élément d > 0.
- $2.c \qquad \delta \in I(u,v) \ \, \text{donc on peut \'ecrire} \ \, \delta = u\xi + v\xi' \ \, \text{avec} \ \, \xi,\xi' \in \mathbb{Z}[i] \, .$ $\forall x \in \delta.\mathbb{Z}[i] \, , \text{ on peut \'ecrire} \ \, x = \delta y \ \, \text{avec} \ \, y \in \mathbb{Z}[i] \, .$ On a alors $x = u(\delta \xi) + v(\delta \xi') \in I(u,v)$. Ainsi $\delta.\mathbb{Z}[i] \subset I(u,v)$. Inversement, soit $x \in I(u,v)$. On peut \'ecrire x = uz + vz' avec $z,z' \in \mathbb{Z}[i]$ Réalisons la division euclidienne de x par $\delta : x = \delta q + r$ avec $N(r) < N(\delta)$. Or $r = x \delta q = u(z \xi q) + v(z' \xi' q) \in I(u,v)$ donc si $r \neq 0$, on a $N(r) \in A$. Ceci contredit la définition de $d = \min A$ car $N(r) < N(\delta) = d$. Nécessairement r = 0 et par suite $x \in \delta.\mathbb{Z}[i]$.
- 2.d $u \in I(u,v) = \delta.\mathbb{Z}[i]$ donc on peut écrire $u = \delta.z$ avec $z \in \mathbb{Z}[i]$. Ainsi $\delta \mid u$. De même $\delta \mid v$. Si $w \mid \delta$ alors $w \mid u$ et $w \mid v$ par transitivité de la divisibilité. Inversement si $w \mid u$ et $w \mid v$ alors on peut écrire u = ws et v = wt avec $s, t \in \mathbb{Z}[i]$ et donc l'écriture $\delta = u\xi + v\xi'$ avec $\xi, \xi' \in \mathbb{Z}[i]$ introduite ci-dessus donne $\delta = w(s\xi + t\xi')$. Ainsi $w \mid \delta$.
- 3.a $I(u,v) = \delta.\mathbb{Z}[i] = \mathbb{Z}[i]$ car $\delta \in \{\pm 1, \pm i\}$. Or $1 \in \mathbb{Z}[i]$ donc $1 \in I(u,v)$ et par suite $\exists z, z' \in \mathbb{Z}[i]$ tels que 1 = uz + vz'.
- 3.b Supposons $u \mid vw$. On a $w = w \times 1 = uwz + vwz'$, or $u \mid uwz$ et $u \mid vwz'$ donc sans difficultés $u \mid w$.
- 4.a Posons δ un pgcd de u et v. δ est un diviseur de l'élément irréductible u. Si $\delta=\pm u$ ou $\delta=\pm iu$ alors, puisque $\delta\,|\,v$, $u\,|\,v$. Ceci est exclu. Il reste $\delta=\pm 1$ ou $\delta=\pm i$ et donc u et v sont premiers entre eux.
- 4.b Si u divise v: ok Sinon, u est premier avec v et donc puisque $u \mid vw$ on a $u \mid w$ en vertu de II.3b.

Partie III

- 1.a Si $n \in \Sigma$ alors on peut écrire $n = a^2 + b^2$ avec $a,b \in \mathbb{Z}$ et alors n = N(u) avec $u = a + ib \in \mathbb{Z}[i]$. Inversement, si n = N(u) avec $u \in \mathbb{Z}[i]$, alors on peut écrire u = a + ib avec $a,b \in \mathbb{Z}$ et on a $N(u) = a^2 + b^2 \in \Sigma$.
- 1.b Si $n, n' \in \Sigma$ alors on peut écrire n = N(u) et n' = N(v) avec $u, v \in \mathbb{Z}[i]$. On a alors nn' = N(u)N(v) = N(uv) avec $uv \in \mathbb{Z}[i]$ donc $nn' \in \Sigma$.
- 2.a Puisque p est premier et strictement supérieur à 2, il n'est pas divisible par 2.
 Par suite p ≡ 1 ou p ≡ 3 modulo 4.
 Puisque p ∈ ∑, on peut écrire p = a² + b² avec a, b ∈ Z.
 Or les seuls valeurs possibles de a² modulo 4 sont 0 ou 1 donc p = 0, 1 ou 2 modulo 4.
 Compte tenu de ce qui précède, il reste p = 1 modulo 4.

- 2.b Si p n'est par irréductible alors on peut écrire p=uv avec $u,v\in\mathbb{Z}\big[i\big]\setminus\big\{\pm 1,\pm i\big\}$. On a alors $p^2=N(p)=N(u)N(v)$. Puisque $N(u)\neq 1$, $N(v)\neq 1$ et p premier, on a N(u)=N(v)=p et donc $p\in\Sigma$.
- 3.a Puisque $p \equiv 3 \mod 4$, p n'appartient pas à Σ (via III.2a) et donc p est irréductible (via III.2b) On a $p \mid a^2 + b^2 = (a+ib)(a-ib)$ or p est irréductible donc $p \mid (a+ib)$ ou $p \mid (a-ib)$. Or il est clair que $p \mid z \Rightarrow p \mid \overline{z}$, donc $p \mid (a+ib)$ et $p \mid (a-ib)$.
- 3.b Suite a ce qui précède $p^2 \mid (a+ib)(a-ib) = n$. Cette dernière divisibilité a lieu a priori dans $\mathbb{Z}[i]$, mais puisque n/p^2 est le rapport de deux entiers, sera un entier et donc la divisibilité a lieu dans \mathbb{Z} .
- 4. Soit $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_N^{\alpha_N}$ de la forme proposée. $\forall 1\leq i\leq N$: Si $p_i=2$ ou $p_i\equiv 1$ modulo 4 alors $p_i\in \Sigma$ (car $2=1^2+1^2$ et par la réciproque admise en III.2a) Par suite $p_i^{\alpha_i}\in \Sigma$ car Σ est stable par produit (III.1.b)

Si
$$p_i \equiv 3 \mod 4$$
 alors $\alpha_i = 2\beta_i$ et $p_i^{\alpha_i} = p_i^{2\beta_i} = (p_i^2)^{\beta_i} \in \Sigma$ car $p_i^2 = p_i^2 + 0^2 \in \Sigma$.

Puisque tous les $\ p_1^{\alpha_1},\ldots,p_N^{\alpha_N}$ appartiennent à $\ \Sigma$, $\ n=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_N^{\alpha_N}$ appartient à $\ \Sigma$.

Inversement : Soit $n \in \Sigma \cap \mathbb{N}^*$. Si n = 1, n est de la forme voulue.

Si $n \geq 2$, introduisons sa décomposition primaire $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_N^{\alpha_N}$.

Pour tout $1 \le i \le N$ tel que $p_i \equiv 3 \mod 4$.

Si $\alpha_i = 0$ alors α_i est pair.

Si $\alpha_i > 0$ alors $p_i \mid n$. Ecrivons $n = a^2 + b^2$ avec $a, b \in \mathbb{Z}$.

Comme vu en III.3a, on a $p_i \mid (a+ib)$ ce qui permet d'écrire $a+ib=p_i(c+id)$.

On a alors $n=p_i^2(c^2+d^2)=p_i^2n'$ avec $n'=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_i^{\alpha_i-2}\dots p_N^{\alpha_N}\in\Sigma$.

On peut alors reprendre la démarche avec n' et, champagne !, α_i est pair.

Correction Problème 2 :

Partie I

1.a $\forall x \in \mathbb{R}, -x \in \mathbb{R} \text{ et } \varphi(-x) = \frac{e^{-2x} - 1}{e^{-2x} + 1} = \frac{1 - e^{2x}}{1 + e^{2x}} = -\varphi(x), \ \varphi \text{ est impaire.}$

1.b
$$\varphi \text{ est } \mathcal{C}^{\infty} \text{ et } \varphi'(x) = \left(1 - \frac{2}{e^{2x} + 1}\right)' = \frac{4e^{2x}}{\left(e^{2x} + 1\right)^2} > 0.$$

arphi est donc strictement croissante sur $\mathbb R$.

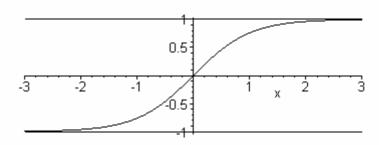
Quand
$$x \to +\infty$$
, $\varphi(x) \sim \frac{e^{2x}}{e^{2x}} \to 1$ donc $\lim_{x \to +\infty} \varphi(x) = 1$.

La droite d'équation y = 1 est asymptote φ en $+\infty$.

Puisque $1-\varphi(x)=\frac{2}{\mathrm{e}^{2x}+1}>0$, Γ_{φ} est en dessous de cette asymptote.

Par imparité, la droite d'équation y=-1 est asymptote à φ en $+\infty$ avec Γ_φ au dessus de cette asymptote.

1.c



2.a φ est continue et strictement croissante sur $\mathbb R$ donc φ réalise une bijection de $\mathbb R$ sur $I=\left|\lim_{-\infty}\varphi,\lim_{+\infty}\varphi\right[=\left]-1,1\right[$.

2.b
$$\varphi'(x) = \frac{4e^{2x}}{(e^{2x} + 1)^2}$$
 et $1 - \varphi^2(x) = 1 - \frac{e^{-4x} - 2e^{2x} + 1}{e^{-4x} + 2e^{2x} + 1} = \frac{4e^{2x}}{(e^{2x} + 1)^2}$.

2.c Puisque φ est dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, \varphi'(x) \neq 0$ on peut affirmer que φ^{-1} est dérivable et de plus :

$$(\varphi^{-1})'(x) = \frac{1}{\varphi'(\varphi^{-1}(x))} = \frac{1}{1 - (\varphi(\varphi^{-1}(x)))^2} = \frac{1}{1 - x^2}.$$

Partie II

1. L'équation fonctionnelle pour x = 0 donne f(0) = 2f(0) d'où f(0) = 0.

2.a
$$u_n = \frac{f(h) - f(0)}{h}$$
 avec $h = \frac{x}{2^n}$.

Quand $n \to +\infty$, on a $h \to 0$ et par composition $u_n \to f'(0)$.

2.b De part l'équation fonctionnelle :
$$f\left(\frac{x}{2^n}\right) = 2f\left(\frac{x}{2^{n+1}}\right)$$
. Donc $u_n = u_{n+1}$.

3. De part l'étude précédente : $u_0 = f'(0)$ et donc $\forall x \in \mathbb{R}^*, f(x) = \alpha.x$ avec $\alpha = f'(0)$. De plus cette relation est encore vraie pour x = 0.

1.
$$\varphi$$
 est dérivable en 0.

$$\forall x \in \mathbb{R}, \frac{2\varphi(x)}{1+\varphi^2(x)} = \frac{2(e^{2x}-1)(e^{2x}+1)}{(e^{2x}+1)^2+(e^{2x}-1)^2} = \frac{e^{4x}-1}{e^{4x}+1} = \varphi(2x).$$

2.a L'équation fonctionnelle pour
$$x = 0$$
 donne $f(0) = \frac{2f(0)}{1 + f^2(0)}$ d'où

$$f(0)(f^2(0)-1) = 0$$
. Par suite $f(0) = 0,1$ ou -1 .

2.b
$$-f$$
 est dérivable en 0 puisque f l'est.

$$\forall x \in \mathbb{R}, -f(2x) = -\frac{2f(x)}{1 + (f(x))^2} = \frac{2(-f(x))}{1 + (-f(x))^2}.$$

2.c
$$f(x) = \frac{2a}{1+a^2}$$
 avec $a = f(x/2)$. Or $(a-1)^2 \ge 0$ et $(a+1)^2 \ge 0$ donnent: $-(1+a^2) \le 2a \le (1+a^2)$ et par suite $-1 \le f(x) \le 1$.

3.a Quand
$$n \to +\infty$$
, on a $\frac{x}{2^n} \to 0$ et puisque f est continue en 0 (car dérivable en 0) on a

$$u_n = f\left(\frac{x}{2^n}\right) \rightarrow f(0) = 1$$
.

3.b
$$u_n = f\left(\frac{x}{2^n}\right) = \frac{2f\left(\frac{x}{2^{n+1}}\right)}{1 + \left(f\left(\frac{x}{2^{n+1}}\right)\right)^2} = \frac{2u_{n+1}}{1 + u_{n+1}^2}.$$

(
$$u_n \ge 0 \Rightarrow u_{n+1} \ge 0$$
) et ($u_n \le 0 \Rightarrow u_{n+1} \le 0$).

Par suite (u_n) est de signe constant et puisque $u_n \to 1$ on peut affirmer que la suite (u_n) est positive.

$$3. \text{d} \qquad u_{n+1} - u_n = \frac{u_{n+1}(u_{n+1}^2 - 1)}{1 + u_{n+1}^2} \leq 0 \ \text{car} \ u_{n+1} = f\left(\frac{x}{2^{n+1}}\right) \in \left[-1, 1\right].$$

Par suite (u_n) est décroissante.

 (u_n) décroît vers 1, donc $\forall n \in \mathbb{N}, u_n \ge 1$.

Or
$$u_n = f\left(\frac{x}{2^n}\right) \in [-1,1]$$
 donc $\forall n \in \mathbb{N}, u_n = 1$.

3.e Puisque
$$u_0=1$$
, on obtient $f(x)=1$ et ceci pour tout $x\in\mathbb{R}^*$. Comme ceci est de plus vrai pour $x=0$, f s'avère être constante égale à 1 .

3.f Dans le cas où
$$f(0) = -1$$
, on applique l'étude ci-dessus à $-f$ pour conclure que f est constante égale à -1 .

4.a Supposons
$$\exists x \in \mathbb{R}$$
 tel que $f(x) = 1$.

Considérons
$$(u_n)$$
 de terme général : $u_n = f\left(\frac{x}{2^n}\right)$.

Comme ci-dessus
$$u_n = \frac{2u_{n+1}}{1+u_{n+1}^2}$$
.

Par récurrence on montre alors $u_n = 1$.

Or
$$u_n \to f(0) = 0$$
, c'est absurde.

Par suite
$$\forall x \in \mathbb{R}, f(x) \neq 1$$
.

De même :
$$\forall x \in \mathbb{R}, f(x) \neq -1$$
.

4.b
$$\varphi(g(2x)) = f(2x) = \frac{2f(x)}{1 + (f(x))^2} \text{ et } \varphi(2g(x)) = \frac{2\varphi(g(x))}{1 + (\varphi(g(x)))^2} = \frac{2f(x)}{1 + (f(x))^2}.$$

L'application φ étant injective : g(2x) = 2g(x).

De plus, par composition, $\,\gamma\,$ est dérivable en $\,0\,$.

4.c De part la partie II :

$$\exists \alpha \in \mathbb{R} \ \text{ tel que } \forall x \in \mathbb{R}, g(x) = \alpha.x \ \text{ et donc } f(x) = \varphi(\alpha.x) = \frac{\mathrm{e}^{2\alpha x} - 1}{\mathrm{e}^{2\alpha x} + 1}.$$