XM6-CPGE My Yousser

Résumé de cours **Séries entières**

RABAT LE 12 FÉVRIER 2010

Blaque du jour :

- Qu'est-ce qui est jaune et vert, qui court dans l'herbe?
- L'équipe de football du Brésil!
- Pourquoi les joueurs d'une équipe de foot ont ils les mains toutes lisses?
- Car cela fait deux ans qu'ils se les frottent en disant "le prochain match, on le gagne!"

Mathématicien du jour

Al Kashi

Al-Kachi (1380-1429) est mathématicien et astronome perse (iranien ouzbek). Al-Kachi calcula le nombre π avec une précision de seize décimales, la plus grande précision pendant près de deux siècles. Al-Kachi joua un rôle important dans la conception de l'observatoire de Samarcande et dans la publication des tables sultaniennes.

Remerciements : à Mr My Hassan Ratbi (Rabat) pour la source latex de ce résumé de cours.

1 Séries entières complexes

1.1 Convergence

Définition:

- On appelle série entière de variable complexe z, toute série de fonctions de la forme $\sum a_n z^n$ où $a_n \in \mathbb{C}$.
- On appelle domaine de convergence $\mathcal{D}=\{z\in\mathbb{C},\ \sum a_nz^n \text{ converge }\}$. Pour tout $z\in\mathcal{D},\ \sum_{n=0}^{+\infty}a_nz^n \text{ s'appelle la somme de la série }\sum a_nz^n \text{ au point }z.$

Lemme d'Abel

Soit $\sum a_n z^n$ une série entière et r>0 tel que $(a_n r^n)$ soit bornée, alors $\forall z\in\mathbb{C}$ tel que |z|< r, on a $\sum a_n z^n$ converge absolument.

Théorème et définition

Soit $\sum a_n z^n$ une série entière de domaine de convergence \mathcal{D} , alors il existe un unique réel positif, R, vérifiant $\mathcal{D}(O,R)\subset\mathcal{D}\subset\overline{\mathcal{D}}(0,R)$.

R s'appelle le rayon de convergence, en particulier pour tout $z\in\mathbb{C}$, on a :

- $\sum a_n z^n$ converge absolument si |z| < R.
- $\sum a_n z^n$ diverge si |z| > R.
- on ne peut rien dire si si |z| < R.

Remarque:

Soit $\sum a_n z^n$ une série entière de rayon de convergence R, $\mathcal{D}(0,R)$ s'appelle le disque de convergence de la série, à l'intérieur duquel la convergence de la série est normale sur tout compact. On a en plus les propriétés suivantes :

- $R = \sup\{|z| \text{ tel que } \sum a_n z^n \text{ converge } \}$
 - = $\sup\{|z| \text{ tel que } \sum a_n z^n \text{ converge absolument }\}$
 - = $\sup\{|z| \text{ tel que } (\overline{a_n}z^n) \text{ bornée } \}$
 - = $\sup\{|z| \text{ tel que } (a_n z^n) \text{ converge vers } 0\}$

1.2 Opérations sur les rayons de convergence

Soient $\sum_{n=0}^{\infty} a_n z^n$ et $\sum_{n=0}^{\infty} b_n z^n$ deux séries entières de rayon de convergence respectivement R_n et R_n .

Règles de D'Alembert et de Cauchy

Propriétés:

- 1) Si $\forall n \in \mathbb{N}, |a_n| \leq |b_n|, \text{ alors } R_n \geq R_h$
- 2) Si $a_n = O(b_n)$ ou $a_n = o(b_n)$, alors $R_n \ge R_{b_n}$
- 3) Si $a_n \sim b_n$, alors $R_n = R_b$.
- 4) Le rayon de convergence R de la somme des deux séries $\sum a_n z^n$ et $\sum b_n z^n$ vérifie :
 - Si $R_a \neq R_b$, $R = \min(R_a, R_b)$,
 - Si $R_a = R_b$, $R \ge R_a = R_b$.

De plus, pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b)$, on a :

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$$

5) Le rayon de convergence R de la série $\sum c_n z^n$, produit de Cauchy des deux séries $\sum a_n z^n$ et $\sum b_n z^n$ vérifie : $R \geqslant \min(R_a, R_b)$ et on a :

$$\forall z \in \mathbb{C}, \text{ tel que } |z| < \min(R_a, R_b), \sum_{n=0}^{+\infty} c_n z^n = \sum_{n=0}^{+\infty} a_n z^n \sum_{n=0}^{+\infty} b_n z^n$$

6) Une série entière et sa série dérivée ont le même rayon de convergence.

Séries entières réelles

Comportement de la somme

Soit $\sum a_n x^n$ une série à coefficients a_n tous réels et à variable x réelle. Soit R son rayon de convergence R, l'intervalle]-R, R[s'appelle l'intervalle de convergence dans lequel la série converge absolument, plus encore elle converge normalement sur tout

compact de] – R, R[. Soit
$$f(x) = \sum_{n=0}^{\infty} \alpha_n x^n$$
, on a les résultats suivants :

- f est continue sur] R, R[.
- f est de classe \mathcal{C}^{∞} sur] -R, R[, avec $a_n = \frac{f^{(n)}(0)}{n!}$, $\forall n \in \mathbb{N}$.
- $\bullet \int_{a}^{b} \sum_{n=0}^{\infty} a_{n} x^{n} dx = \sum_{n=0}^{\infty} a_{n} \int_{a}^{b} x^{n} dx.$

2.2 Fonctions développables en série entière

Définition

Soit f une fonction d'une partie X de \mathbb{R} dans \mathbb{C} . On dit que f est développables en série entière (DSE) en $x_0 \in X$, s'il existe une série entière $\sum a_n x^n$ de rayon R > 0 et $r \in]0, R]$ avec $]-r, r[\subset X$ tel que :

$$\forall x \in]x_0 - r, x_0 + r[, f(x) = \sum_{n=0}^{+\infty} a_n (x - x_0)^n$$

Théorème

Si f est développable en série entière en x_0 , alors il existe un voisinage de x_0 sur le quel f est de classe C^{∞} et le développement en série entière de f en x_0 est

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n.$$
 Cette série est appelée série de Taylor de f en x_0 .

Remarque: La réciproque du théorème précèdent est en général fausse, toutefois on a le résultat suivant :

- Théorème

Si f est de classe \mathcal{C}^{∞} au voisinage de x_0 , et si le reste intégral $R_n(x)$ $\int_{x_0}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$ converge uniformément vers 0 alors f est développable

en série entière en
$$x_0$$
 avec $f(x)=\sum_{n=0}^{+\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$ au voisinage de x_0

Propriétés :

- 1) La somme de deux fonctions DSE est DSE et son DSE est la somme des deux développements.
- 2) La produit de deux fonctions DSE est DSE et son DSE est la produit de Cauchy des deux développements.
- 3) Si f est DSE alors f' est DSE.

3 Fonctions holomorphes

Définition :

Soit U ouvert de $\mathbb C$ et $f:U\longrightarrow \mathbb C$, on dit que f est dérivable en un point $z_0\in U$ si et seulement si $\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}$ existe dans $\mathbb C$, on pose alors $f'(z_0)=\int_{\mathbb C} f(z_0) dz$

 $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$, appelée dérivée de f au point z_0 .

On dit que f est holomorphe sur U si elle est dérivable en tout point de U.

Remarque:

- La somme, produit, composée, rapport (quand ils sont définis) de fonctions holomorphes est une fonction holomorphe.
- Les opérations sur les dérivées des fonctions à variable réelle sont encore valables pour celles à variable complexe.

Théorème

Soit U ouvert de $\mathbb C$ et $f:U\longrightarrow \mathbb C$, et f dérivable en un point $z_0\in U$ alors

$$\frac{\partial f}{\partial y}(z_0)=\mathrm{i}\frac{\partial f}{\partial x}(z_0)$$
 Conditions de Cauchy-Riemann

Définition

• Soit $f:U\longrightarrow \mathbb{C}$. On dit que f est développables en série entière (DSE) en $z_0\in U$, s'il existe une série entière $\sum \alpha_n z^n$ de rayon R>0 et $r\in]0,R]$ avec

$$\mathcal{D}(0,r)\subset X$$
 tel que : $\forall x\in\mathcal{D}(0,r),\ f(z)=\sum_{n=0}^{+\infty}a_n(z-z_0)^n$

- On dit que f est analytique sur U si et seulement si elle DSE en tout point de U.
- on dit que f est une fonction entière si elle DSE sur U.

Théorème

Soit U ouvert de $\mathbb C$ et $f:U\longrightarrow\mathbb C$, alors f est holomorphe sur U si et seulement si f est analytique sur U

Théorème

Soit U ouvert de $\mathbb C$ et $f:U\longrightarrow \mathbb C$ holomorphe sur U, alors $\{z\in U \text{ tel que } f(z)=0\}$ est au plus dénombrable et si $z_0\in U$ tel que $f(z_0)=0$, alors $\exists!n\in \mathbb N$ et $g:U\longrightarrow \mathbb C$ holomorphe telle que $f(z)=(z-z_0)^ng(z)$.

