Spé1

Série: Equations différentielles linéaires

25/02/00

Exercice 1:

Résoudre dans R³ l'équation
$$X' = AX$$
 où $A = \begin{bmatrix} 1 & -1 & 3 \\ 4 & -4 & 3 \\ 2 & 1 & 0 \end{bmatrix}$

Exercice 2:

Exercice 2:
Résoudre dans R³ l'équation
$$X' = AX + B$$
 où B= $\begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}$ et $A = \begin{bmatrix} -3 & 4 & 5 \\ -3 & 6 & 9 \\ -3 & 0 & -3 \end{bmatrix}$

Exercice 3:

Résoudre dans R l'équation $x''' - 2x'' - x' + 2x = \sin t$

Exercice 4:

Soit l'équation différentielle: $t^2(1-t)x'' - t(1+t)x' + x = 0$.(1)

- 1) Déterminer les solutions de (1) développables en séries entières.
- 2) Résoudre (1) sur chacun des intervalles: $]0,1[,]1,+\infty[,[0,+\infty[$

Exercice 5:

Soit $\omega \in \mathbb{R}^3$, préciser la nature des trajectoires des solutions de $x' = \omega \wedge x$

Exercice 6:

Résoudre dans $]0,+\infty[$ l'équation $t^2x'' + tx' + x = 2t$

On cherchera des solutions particulières de l'équation homogène de la forme $t \to t^{\alpha}$ Exercice 7:

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 tq $\lim f(t) + f'(t) = 0$

Montrer que $\lim f(t) = 0$

Exercice 8:

Soit $b : R \rightarrow R$ continue bornée.

Montrer que l'équation x' = b - x admet une unique solution bornée

Exercice 9:

Soit q: $[0,+\infty[\to R \text{ continue intégrable.}]$

- 1) f étant une solution bornée sur $[0,+\infty]$ de (E): x'' + qx = 0Etudier $\lim f'$.
- 2) Montrer que (E) a des solutions non bornées.

Exercice 10:

Soient $p, q: I \to R$ continues.

On considère l'équation linéaire scalaire d'ordre 2: x'' = px' + qx.(1)

- 1)Soit f une solution non nulle de (1).
- a)Montrer que les zéros de f sont isolés
- b)Déduire que sur tout segment inclus dans I, f n'a qu'un nombre fini de zéros
- 2)Soit (f,g) une base de l'ensemble des solutions de (1).

Montrer qu'entre deux zéros consécutifs de f il ya un unique zéro de g

(On examinera le wronskien de f et g)