# MAMOUNI MY ISM

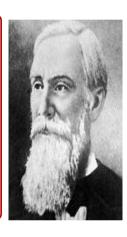


## **Endomorphismes nilpotents.**

#### Blague du jour

Un homme regarde un match de foot dans un café, lorsque son équipe nationale marque un but, le chien se met à courir dans tout les sens. Le voisin demande à l'homme : Qu'est ce qui lui arrive votre chien ?

- Il est supporter de l'équipe nationale, il est content.
- Ben dites donc, juste pour un but! Et qu'est-ce-qu'il fait quand elle gagne un match ?!!
- Je ne sais pas, je ne l'ai que depuis 5 ans...



#### Pafnouti Lvovitch Tchebychev (1821-1894)

Mathématicien russe, connu pour ses travaux dans le domaine des probabilités et des statistiques. Tchebychev appartient à l'école mathématique russe fondée par Daniel Bernoulli et Euler Il démontra en 1850 une conjecture énoncée par Bertrand : Pour tout entier n au moins égal à 2, il existe un nombre premier entre n et 2n.

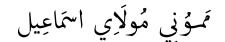
### **■** Énoncé (cnc 2005, TSI)

E désigne un espace vectoriel réel de dimension finie n > 2. L'identité est notée  $I_E$ . Pour  $u \in \mathcal{L}(E)$ , on pose  $u^0 = I_E$ .

On considère un endomorphisme nilpotent u de E, c'est à dire un endomorphisme tel qu'il existe  $r \in \mathbb{N}^*$  avec  $u^r = 0$ ; on pose alors  $p = \min \Big\{ k \in \mathbb{N}^* / u^k = 0 \Big\}.$ 

**a** Justifier qu'il existe  $x_0 \in E$  tel que  $u^{p-1}(x_0) \neq 0$ .

- Montrer que la famille  $(x_0, u(x_0), \cdots, u^{p-1}(x_0))$  est libre.
- c En déduire que  $p \le n$  et que  $u^n = 0$ .
- On suppose qu'il existe  $v \in \mathcal{L}(E)$  tel que  $v^2 = u$ .
  - a Calculer  $v^{2p}$  et  $v^{2(p-1)}$ , puis en déduire que  $p \leq \frac{n+1}{2}$ .
  - Donner alors un exemple de matrice  $M \in \mathcal{M}_2(\mathbb{R})$  telle que l'équation  $X^2 = M$  n'ait pas de solution dans  $\mathcal{M}_2(\mathbb{R})$ .



#### PROBLÈMES CORRIGÉS-MP



Dans cette question, on suppose que p = n; on a donc  $u^{n-1} \neq 0$  et  $u^n = 0$ . On considère un endomorphisme g de Etel que  $g^2 = I_E + u$ .

- Soit  $x_1 \in E$  tel que  $u^{n-1}(x_1) \neq 0$ . Justifier que  $(x_1, u(x_1), \dots, u^{n-1}(x_1))$  est une base de E et qu'il existe  $(\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{R}^n$  tel que  $g(x_1) = \sum_{k=0}^{n-1} \alpha_k u^k(x_1)$ .
- **b** Vérifier que  $g \circ u = u \circ g$  et montrer que  $g = \sum_{k=0}^{n-1} \alpha_k u^k$ .
- c Justifier que la famille  $(I_E, u, \dots, u^{n-1})$  est libre puis, en calculant  $g^2$  de 2 façons, montrer que  $\alpha_0^2 = 1$ ,  $2\alpha_0\alpha_1 = 1$  et

$$\sum_{k=0}^{q} \alpha_k \alpha_{q-k} = 0 \text{ pour } 2 \le q \le n-1 \text{ (si } n \ge 3).$$

- Montrer alors que  $\alpha_0 \in \{-1,1\}$  et que, pour tout  $k \in \{1, \dots, n-1\}, \alpha_k$  peut être exprimé de manière unique en fonction de  $\alpha_0$ .
- e Conclure qu'il y a exactement deux endomorphismes de E dont le carré est égal à  $I_E + u$ .
- ③  **★** :**Application** : Déterminer toutes les matrices  $X \in \mathcal{M}_4(\mathbb{R})$

telles que 
$$X^2 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$



Á la prochaine

### **▼** Corrigé (Pr. Mamouni, Rabat)

- ① **a**  $p = \min\{k \in \mathbb{N}^* \text{ tel que } u^k = 0\}, \text{ donc } u^{p-1} \neq 0, \text{ et par suite } \exists x_0 \in E \text{ tel que } u^{p-1}(x_0) \neq 0.$ 
  - b Soit  $(\lambda_i)_{0 \le i \le p}$  tel que  $\lambda_0 x_0 + \lambda_1 u(x_0) + \dots + \lambda_{p-1} u^{p-1}(x_0) = 0$ , on compose par  $u^{p-1}$  et comme  $u^k = 0$ ,  $\forall k \ge p$ , alors  $\lambda_0 u^{p-1}(x_0) = 0$ , or  $u^{p-1}(x_0) \ne 0$ , d'où  $\lambda_0 = 0$ , ce qui donne  $\lambda_1 u(x_0) + \dots + \lambda_{p-1} u^{p-1}(x_0) = 0$ , on compose cette fois par  $u^{p-2}$ , ce qui donne  $\lambda_1 u^{p-1}(x_0) = 0$ , d'où  $\lambda_1 = 0$  et on re-itère le même procédé jusqu'à montrer que tous les  $\lambda_i$  sont nuls. D'où la famille  $\mathcal{C} = (x_0, u(x_0), \dots, u^{p-1}(x_0))$  est libre.
  - **c** C est libre, donc card(C) =  $p \le \dim(E) = n$ , or  $u^p = 0$  et  $n \ge p$ , d'où  $u^n = 0$ .
- ② **a**  $v^{2p} = (v^2)^p = u^p = 0$  et  $v^{2(p-1)} = u^{p-1} \neq 0$ . Posons :  $q = \min\{k \in \mathbb{N}^* \text{ tel que } v^k = 0\}$ , donc  $2(p-1) < q \leq 2p$ , et comme dans ce qui précède pour u, on peut aussi affirmer pour v que  $q \leq n$ , ainsi  $2(p-1) + 1 \leq q \leq n$ , d'où  $2p-1 \leq n$ , d'où  $p \leq \frac{n+1}{2}$ .
  - **b** Soit =  $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ . On a  $M^2 = 0$  et M = 0, donc p = 2, pour  $M \in \mathcal{L}(\mathbb{R}^2)$ , d'où suivant la question précédente si

 $X^2 = M$ , on devrait avoir  $p\frac{3}{2}$ , ce qui n'est pas le cas, donc l'équation  $X^2 = M$ , n'admet pas de solutions.

- ③ **a** De la même façon que dans la question 1.2), on montre que la famille  $(x_1, u(x_1), \ldots, u^{n-1}(x_1))$  est libre, or son cardinal est égal à  $n = \dim(E)$ , donc c'est une base, et pas suite c'est une famille génératrice de E, or  $g(x_1) \in E$ , d'où l'existence de nombres réels  $(\alpha_i)_{0 \le i \le n-1}$  tel que  $g(x_1) = \alpha_0 x_1 + \alpha_1 u(x_1) + \ldots + \alpha_{n-1} u^{n-1}(x_1)$ .
  - **b**  $g^2 = u + I_E$ , d'où  $u = g^2 I_E$  et donc  $gu = g^3 g = ug$ .

Et par récurrence sur  $k \in \mathbb{N}$ , on montre que  $gu^k = u^k g$ . D'autre part on a les égalités suivantes :

$$\begin{cases} g(x_1) = & \alpha_0 x_1 + \alpha_1 u(x_1) + \ldots + \alpha_{n-1} u^{n-1}(x_1) \\ gu(x_1) = & u(g(x_1)) = \alpha_0 u(x_1) + \alpha_1 u(u(x_1)) + \ldots + \alpha_{n-1} u^{n-1}(x_1) \\ \vdots \\ gu^{n-1}(x_1) = & u^{n-1}(g(x_1)) = \alpha_0 u^{n-1}(x_1) + \ldots + \alpha_{n-1} u^{n-1}(u^{n-1}(x_1)) \end{cases}$$

Ainsi g et  $\alpha_0 I_E + \ldots + \alpha_{n-1} u^{n-1}$  coïncident sur la base  $(x_1, u(x_1), \ldots, u^{n-1}(x_1))$ , et comme elles sont linéaires elles coïncident sur E.

Soit  $(\lambda_i)_{0 \le i \le n}$  tel que  $\lambda_0 I_E + \lambda_1 u + \ldots + \lambda_{p-1} u^{n-1} = 0$ , on applique cette relation à  $x_1$ , on trouve  $\lambda_0(x_1) + \lambda_1 u(x_1) + \ldots + \lambda_{p-1} u^{n-1}(x_1) = 0$ , or la famille  $(x_1, u(x_1), \ldots, u^{n-1}(x_1))$  est libre, d'où  $\lambda_i = 0$ ,  $\forall 1 < i < n$ , et donc  $(I_E, u, \ldots, u^{n-1})$  est libre.

تمونى مُولَاي اسْمَاعِيل

#### Problèmes Corrigés-MP



1 ére façon :  $g^2 = I_E + u$ .

2 ème façon : 
$$g^2 = \left(\sum_{k=0}^n \alpha_k u^k\right)^2$$

$$= \sum_{q=0}^n \left(\sum_{k=0}^q \alpha_k \alpha_{q-k}\right) u^q$$

$$= \sum_{q=0}^n \beta_k u^q \quad \text{Avec} : \beta_k = \sum_{k=0}^q \alpha_k \alpha_{q-k}$$

Et par identification puisque la famille  $(I_E, u, \dots, u^{n-1})$  est libre, on a alors:  $\beta_0 = \alpha_0^2 = 1$ ,  $\beta_1 = 2\alpha_0\alpha_1 = 1$  et  $\beta_a =$ 0,  $\forall q \geq 2$ .

**d** 
$$\alpha_0^2 = 1$$
, donc  $\alpha_0 \in \{-1, 1\}$ .

Montrons par récurrence sur  $q \in \{1, ..., n\}$ , que  $\alpha_q$  s'exprime de façon unique en fonction de  $\alpha_0$ .

Pour q = 1, on a :  $\alpha_1 = \frac{1}{2\alpha_0}$ , donc le résultat est vrai pour q = 1, supposons qu'il est vrai jusqu'à l'ordre q - 1, et montrons que c'est vrai pour *q*.

En effet 
$$\sum_{k=0}^{q} \alpha_k \alpha_{q-k} = 0$$
, donc  $2\alpha_q \alpha_0 = -\sum_{k=1}^{q-1} \alpha_k \alpha_{q-k}$ ,

or  $1 \le k \le q-1$  et  $1 \le q-k \le q-1$ , d'où les  $\alpha_k \alpha_{q-k}$  s'expriment de façon unique en fonction de  $\alpha_0$ , donc leur somme aussi, et par la suite  $2\alpha_a\alpha_0$  aussi et finalement  $\alpha_a$  aussi.

- e Les solutions, g de l'équation  $g^2 = I_E + u$ , sont de la forme  $g = \sum_{k=0}^{n} \alpha_k u^k$ , or  $\forall q \in \{1, ..., n\}$ ,  $\alpha_q$  s'exprime de façon unique en fonction de  $\alpha_0 \in \{-1,1\}$ . Donc deux possibilités suivant la valeur prise par  $\alpha_0$ .
- ① L'équation peut s'écrire sous la forme  $X^2 = I_1 + A$ , avec :

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ qui vérifie } A^4 = 0 \text{ et } A^3 \neq 0, \text{ donc}$$

 $X = \alpha_0 I_4 + \alpha_1 A + \alpha_2 A^2 + \alpha_3 A^3$ , avec les relations suivantes :  $\alpha_0 \in \{-1,1\}$  $2\alpha_0\alpha_1=1$ 

$$2\alpha_0\alpha_2 + \alpha_1^2 = 0$$
  $2\alpha_0\alpha_3 + 2\alpha_1\alpha_2 = 0$ 

Les solutions possibles sont :

$$\begin{cases} \alpha_0 = 1 &, \alpha_1 = \frac{1}{2} &, \alpha_2 = -\frac{1}{4} &, \alpha_3 = \frac{1}{8} \\ \alpha_0 = -1 &, \alpha_1 = -\frac{1}{2} &, \alpha_2 = \frac{1}{4} &, \alpha_3 = -\frac{1}{8} \end{cases}$$



Á la prochaine