PROBLÈMES CORRIGÉS-MP

■ Corrigé : Pr Skler, CPGE France

- ① On considère l'espace vectoriel réel usuel \mathbb{R}^2 muni de son produit scalaire canonique tel que la base canonique \mathcal{B} soit orthonormale.
 - a Soit $h : \mathbb{R} \longrightarrow \mathbb{R}^2$ définie par : $h(t) = (\cos^2(t), \cos(t)\sin(t))$.
 - i Représenter la courbe C_1 d'équation dans \mathcal{B} :

$$(2x-1)^2 + (2y)^2 = 1$$

et préciser la nature de cette courbe.

Correction: on a

$$(2x-1)^2 + (2y)^2 = 1 \Leftrightarrow \left(x - \frac{1}{2}\right)^2 + y^2 = \frac{1}{4}$$

c'est l'équation du cercle de centre le point de coordonnées $\left(\frac{1}{2},0\right)$ et de rayon $\frac{1}{2}$.

ii Comparer C_1 avec la courbe paramétrée par h, c'est-à-dire :

$$\{(\cos^2(t),\cos(t)\sin(t)), t \in \mathbb{R}\}.$$

Correction : on a pour tout $t \in \mathbb{R}$

$$\left(2\cos^2(t) - 1\right)^2 + \left(2\sin(t)\cos(t)\right)^2 = \left(\cos(2t)\right)^2 + \left(\sin(2t)\right)^2 = 1$$

On en déduit que la courbe paramétrée par h est incluse dans C_1 .

Réciproque : soit M un point de coordonnées (x,y) appartenant à C_1 , on a

$$(2x-1)^2 + (2y)^2 = 1 \Leftrightarrow \theta \in \mathbb{R} \quad / \quad 2x-1 = \cos(\theta) \text{ et } 2y = \sin(\theta)$$

on pose $t = \frac{\theta}{2}$, on a alors $2x - 1 = \cos{(2t)}$ et $2y = \sin{(2t)}$, d'où

$$x = \cos^2(t)$$
 et $y = \cos(t)\sin(t)$

Tout point du cercle C^1 est aussi un point de la courbe paramétrée par h.

Conclusion : C_1 est le support de la courbe paramétrée par h

b Soit $f_2 : \mathbb{R} \longrightarrow \mathbb{R}^2$ avec $f_2(t) = (\cos^2(t), \sin(t))$.

Étudier et représenter la courbe C_2 paramétrée par f_2 , c'est-àdire :

$$C_2 = \{(\cos^2(t), \sin(t)), t \in \mathbb{R}\}.$$

Pour cela, on commencera par comparer C_2 avec la courbe d'équation dans \mathcal{B} :

$$x + y^2 = 1$$
, avec $-1 \le y \le 1$,

et préciser la nature de cette courbe.

Correction : soit $t \in \mathbb{R}$ on a

$$\cos^2(t) + (\sin(t))^2 = 1 \text{ et } -1 \le \sin(t) \le 1$$

donc la courbe C_2 est incluse dans la courbe définie par $x + y^2 = 1$, avec $-1 \le y \le 1$.

Réciproquement : soit un point de coordonnées (x,y) tel que $x+y^2=1$, avec $-1 \le y \le 1$. Comme $y \in [-1,1]$ il existe $t \in \mathbb{R}$ tel que $y=\sin(t)$. On a alors $x=1-y^2=\cos^2(t)$. La courbe C_2 est donc définie par $x+y^2=1$, avec $-1 \le y \le 1$. C'est une portion de parabole.

Etude de la courbe paramétrée : f_2 est 2π périodique. On a

PROBLÈMES CORRIGÉS-MP

de plus

$$\forall t \in \mathbb{R} \quad f_2(-t) = \left(\cos^2(t), -\sin(t)\right)$$

la courbe admet l'axe des abscisses comme axe de symétrie. On peut donc rerstraindre l'étude à $[0, \pi]$, cependant on peut remarquer que

$$\forall t \in [0, \pi] \quad f_2(\pi - t) = f_2(t)$$

La courbe définie pour $t \in [0, \pi]$ est donc parcourue 2 fois on peut donc restraindre l'étude à $\left[0, \frac{\pi}{2}\right]$ avant la symétrie par rapport à l'axe des abscisses.

La fonction f_2 est de classe C^{∞} sur \mathbb{R} et on a

$$\forall t \in \left[0, \frac{\pi}{2}\right] \quad f_2'(t) = \left(-2\sin\left(t\right)\cos\left(t\right), \cos\left(t\right)\right)$$

d'où le tableau de variation :

arianon	•		~
t	0		$\frac{\pi}{2}$
$x_2'(t)$	0	_	0
	1		
$x_2(t)$		V	
			0
			1
$y_2(t)$		7	
	0		
$y_2'(t)$		+	0

c Soit
$$f_3 : \mathbb{R} \longrightarrow \mathbb{R}^2$$
 avec $f_3(t) = (\cos(t)\sin(t), \sin(t))$.

Étudier et représenter la courbe C_3 paramétrée par f_3 , c'est-àdire:

$$C_3 = \{(\cos(t)\sin(t), \sin(t)), t \in \mathbb{R}\}.$$

Montrer que C_3 est la courbe d'équation dans $\mathcal{B}: (2x)^2 + (1 - 2x)^2 + (1 -$ $(2y^2)^2 = 1$

Correction : la fonction f_3 est 2π périodique. On a $\forall t \in [-\pi, \pi]$ $f_3(t) = -f_3(t)$

la courbe admet donc O comme centre de symétrie. On peut restraindre l'étude à $[0, \pi]$

De plus

$$\forall t \in [0, \pi] \quad f_3(\pi - t) = (-\cos(t)\sin(t), \sin(t))$$

la courbe admet donc l'axe des ordonnées comme axe de symétrie. On peut donc restraindre l'étude à $\left|0,\frac{\pi}{2}\right|$. Avec

$$f(t) = \left(\frac{1}{2}\sin(2t), \sin(t)\right) \text{ on a}$$

$$\forall t \in \begin{bmatrix} 0 & \pi \end{bmatrix} \quad f'(t) = (\cos(2t))$$

$$\forall t \in \left[0, \frac{\pi}{2}\right] \quad f_3'(t) = (\cos(2t), \cos(t))$$

d'où le tableau de variations

de vari	auo	π		π	
t	0		$\frac{\pi}{4}$		$\frac{\pi}{2}$
$x_3'(t)$		+	0	_	
			$\frac{1}{2}$		
$x_3(t)$		\nearrow	2	\searrow	
	0				0
			. / 2		1
$y_3(t)$		7	$\frac{\sqrt{2}}{2}$	7	
	0				
$y_3'(t)$		+		+	

$$\forall t \in \mathbb{R}, (2x_3(t))^2 + (1 - 2y_3(t)^2)^2 = \sin^2(2t) + (1 - 2\sin^2(t))^2 = \sin^2(2t) + \cos^2(2t) = 1$$
. La courbe C_3 est bien incluse dans la courbe définie par $(2x)^2 + (1 - 2y^2)^2 = 1$. Soit un point de coordonnées (x, y) appartenant à cette

مَسُونِي مُولَاِي اسْمَاعِيل

mamouni.myismail@gmail.com

MAMOUNI.NEW.FR MOUNI MY ISM

Problèmes Corrigés-MP

courbe,

$$\exists \theta \in \mathbb{R} \ / \ 2x = \sin(\theta) \text{ et } 1 - 2y^2 = \cos(\theta)$$

On pose $t = \frac{1}{2}\theta$ et on obtient $x = \cos(t)\sin(t)$ et $y^2 = \sin^2(t)$. Si $y = \sin(t)$ alors on obtient bien un point de C_3 . Si $y = -\sin(t)$ on a $y = \sin(t + \pi)$ et $x = \cos(t)\sin(t) =$ $\cos(t+\pi)\sin(t+\pi)$. c'est encore un point de C_3 . Donc C_3 est bien la courbe définie par l'équation $(2x)^2 + (1 - 2y^2)^2 = 1$

- ② On considère l'espace vectoriel réel usuel \mathbb{R}^3 orienté, muni de son produit scalaire canonique tel que la base canonique ${\cal C}$ soit orthonormale directe.
 - a Soit $S_1 = \{(x, y, z) \in \mathbb{R}^3 / x^2 x + y^2 = 0\}$ et $S_2 =$ $\{(x,y,z) \in \mathbb{R}^3/x^2+y^2+z^2=1\}$. Préciser la nature des deux surfaces S_1 et S_2 .

Correction : S_1 est le cylindre d'axe parallèle à Oz et de directrice le cercle C_1 , et S_2 est la sphère de centreO et de rayon

b Soit
$$\Gamma = \left\{ (x, y, z) \in \mathbb{R}^3 / \left\{ \begin{array}{l} x = x^2 + y^2 \\ x^2 + y^2 + z^2 = 1 \end{array} \right\}.$$

Que représente Γ vis-à-vis de S_1 et S_2 ?

Correction : Γ est l'intersection des deux surfaces S_1 et S_2

c Déterminer l'équation dans C du plan tangent en tout point régulier $M_0 = (x_0, y_0, z_0)$ de S_1 .

De même déterminer l'équation dans $\mathcal C$ du plan tangent en tout point régulier $M_0 = (x_0, y_0, z_0)$ de S_2 .

En déduire la tangente en tout point $M_0 = (x_0, y_0, z_0)$ régulier de Γ.

Correcton: en un point régulier $M_0 = (x_0, y_0, z_0)$ une él'équation du plan tangent à la surface d'équation

f(x, y, z) = 0 est $\left(\overrightarrow{grad}\left(f\right)\left(x_0,y_0,z_0\right)\mid\overrightarrow{M_0M}\right)=0$

ou encore
$$\frac{\partial f}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial f}{\partial z}(x_0, y_0, z_0)(z - z_0)$$

On trouve donc : pour S_1

$$(2x_0 - 1).(x - x_0) + 2y_0.(y - y_0) = 0$$

et donc, avec $M_0 = (x_0, y_0, z_0) \in S_1$

$$(2x_0-1).x + 2y_0.y + 2x_0 = 0$$

Pour S₂

$$2x_0.(x - x_0) + 2y_0.(y - y_0) + 2z_0.(z - z_0) = 0$$

et donc, avec $M_0 \in S_2$

$$x_0.x + y_0.y + z_0.z = 1$$

Lorsque les plans tangents aux surfaces ne sont pas confondus, la tangente au point d'intersection des deux surface est alors l'intersection des deux plans tangents.

d Déterminer un paramétrage de Γ , en utilisant les coordonnées cylindriques : c'est-à-dire que l'on exprimera pour $M = (x, y, z) = (r\cos(\theta), r\sin(\theta), z)$ les conditions sur r, θ, z pour que M soit sur Γ .

En déduire une représentation paramétrique du cône de sommet $S = (\frac{1}{2}, 0, 0)$, engendré par les droites passant par S et un point variable sur Γ .

Correction : Soit M un point de coordonnées (x, y, z) = $(r\cos(\theta), r\sin(\theta), z)$.On a

$$M \in \Gamma \Leftrightarrow r\cos(\theta) = r^2 \text{ et } r^2 + z^2 = 1$$

 $\Leftrightarrow (r = 0 \text{ ou } r = \cos(\theta)) \text{ et } z^2 = 1 - r^2 = 1 - \cos^2(\theta) = \sin^2(\theta).$

PROBLÈMES CORRIGÉS-MP

MAMOUNI MY ISMA

On obtient alors $r = \cos(\theta)$ et $z = \sin(\theta)$ avec $\theta \in \mathbb{R}$, ou $r = \cos(\theta)$ et $z = -\sin(\theta)$ avec $\theta \in \mathbb{R}$. Ces deux paramétrages donnent la même courbe.

On obtient alors pour paramétrage de $\Gamma: x = \cos^2(\theta), y =$ $cos(\theta) sin(\theta), z = sin(\theta), \theta \in \mathbb{R}.$

Soit *C* le cône de sommet $S = \left(\frac{1}{2}, 0, 0\right)$ s'appuyant sur Γ on a .

$$M \in C \Leftrightarrow \exists \lambda \in \mathbb{R} \quad \exists M_0 \in \Gamma \quad \overrightarrow{SM} = \lambda \overrightarrow{SM_0}$$

$$\Leftrightarrow \quad \exists (\lambda, \theta) \in \mathbb{R}^2 : \begin{cases} x = \frac{1}{2} + \lambda \left(\cos^2(\theta) - \frac{1}{2} \right) \\ y = \lambda \cos(\theta) \sin(\theta) \\ z = \lambda \sin(\theta) \end{cases}$$

e Pour $t \in \mathbb{R}$, on pose : $F(t) = (\cos^2(t), \cos(t)\sin(t), \sin(t))$. Soit $\gamma = \{F(t), t \in \mathbb{R}\}$. Montrer que $\gamma \subset \Gamma$. Y-a-t-il égalité $\gamma = \Gamma$?

Correction : soit $t \in \mathbb{R}$ on a $\cos(t)^4 + \sin(t)^2 \cos(t)^2 = \cos(t)^2$ et

 $\cos(t)^4 + \sin(t)^2 \cos(t)^2 + \sin(t)^2 = \cos(t)^2 + \sin(t)^2 = 1$ donc $\gamma \subset \Gamma$. La réciproque a été étudiée dans la question d) donc $\gamma = \Gamma$

f Préciser comment on obtient les trois courbes planes qui sont les projections orthogonales de Γ sur les plans xOy, xOzet yOz, en faisant le lien avec les courbes étudiées dans la première question.

Correction: Les trois courbes planes projections orthogonales de Γ sur les plans xOy, xOz et yOz sont obtenues en annulant une coordonnée.

Sur $xOy: z = 0, x = \cos^2(t), y = \cos(t)\sin(t), t \in \mathbb{R}$: courbe C_1 ;

 $sur xOz : y = 0, x = cos^2(t), z = sin(t), t \in \mathbb{R} : analogue à la$ courbe C₂;

 $\sup yOz : x = 0, y = \cos(t)\sin(t), z = \sin(t), t \in \mathbb{R}$: analogue à la courbe C₃

Á la prochaine